Contents at a Glance

<table>
<thead>
<tr>
<th>Chapter</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Introduction</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>Chapter 1: Matter and Energy: Exploring the Stuff of Chemistry</td>
<td>5</td>
</tr>
<tr>
<td>2</td>
<td>Chapter 2: What's In an Atom?</td>
<td>17</td>
</tr>
<tr>
<td>3</td>
<td>Chapter 3: The Periodic Table</td>
<td>35</td>
</tr>
<tr>
<td>4</td>
<td>Chapter 4: Nuclear Chemistry</td>
<td>43</td>
</tr>
<tr>
<td>5</td>
<td>Chapter 5: Ionic Bonding</td>
<td>55</td>
</tr>
<tr>
<td>6</td>
<td>Chapter 6: Covalent Bonding</td>
<td>69</td>
</tr>
<tr>
<td>7</td>
<td>Chapter 7: Chemical Reactions</td>
<td>87</td>
</tr>
<tr>
<td>8</td>
<td>Chapter 8: Electrochemistry: Using Electrons</td>
<td>111</td>
</tr>
<tr>
<td>9</td>
<td>Chapter 9: Measuring Substances with the Mole</td>
<td>125</td>
</tr>
<tr>
<td>10</td>
<td>Chapter 10: A Salute to Solutions</td>
<td>135</td>
</tr>
<tr>
<td>11</td>
<td>Chapter 11: Acids and Bases</td>
<td>145</td>
</tr>
<tr>
<td>12</td>
<td>Chapter 12: Clearing the Air on Gases</td>
<td>159</td>
</tr>
<tr>
<td>13</td>
<td>Chapter 13: Ten Serendipitous Discoveries in Chemistry</td>
<td>171</td>
</tr>
<tr>
<td></td>
<td>Index</td>
<td>175</td>
</tr>
</tbody>
</table>
Contents

Introduction ... 1
 About This Book .. 1
 Conventions Used in This Book 2
 Foolish Assumptions .. 2
 Icons Used in This Book .. 3
 Where to Go from Here .. 3

Chapter 1: Matter and Energy: Exploring the Stuff of Chemistry 5
 Knowing the States of Matter and Their Changes 6
 Solids, liquids, and gases .. 6
 Solids ... 6
 Liquids .. 7
 Gases ... 7
 Condensing and freezing ... 7
 Melting and boiling ... 8
 From solid to liquid .. 8
 From liquid to gas .. 9
 Skipping liquids: Sublimation ... 9
 Pure Substances and Mixtures ... 10
 Pure substances .. 10
 Elements .. 10
 Compounds ... 11
 Throwing mixtures into the mix 11
 Measuring Matter .. 12
 Nice Properties You’ve Got There 13
 Energy Types ... 14
 Kinetic energy .. 14
 Potential energy .. 15
 Temperature and Heat .. 15

Chapter 2: What’s In an Atom? .. 17
 Subatomic Particles .. 17
 Centering on the Nucleus .. 19
 Locating Those Electrons .. 21
 The quantum mechanical model 21
 The principal quantum number n 22
 The angular momentum quantum number l 23
<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>The magnetic quantum number m_l</td>
<td>25</td>
</tr>
<tr>
<td>The spin quantum number m_s</td>
<td>25</td>
</tr>
<tr>
<td>Putting the quantum numbers together</td>
<td>25</td>
</tr>
<tr>
<td>Energy level diagrams</td>
<td>26</td>
</tr>
<tr>
<td>The dreaded energy level diagram</td>
<td>27</td>
</tr>
<tr>
<td>Electron configurations</td>
<td>29</td>
</tr>
<tr>
<td>Valence electrons: Clues about chemical reactions</td>
<td>30</td>
</tr>
<tr>
<td>Isotopes and Ions</td>
<td>30</td>
</tr>
<tr>
<td>Isotopes: Varying neutrons</td>
<td>31</td>
</tr>
<tr>
<td>Ions: Varying electrons</td>
<td>32</td>
</tr>
<tr>
<td>Gaining and losing electrons</td>
<td>32</td>
</tr>
<tr>
<td>Writing electron configurations</td>
<td>33</td>
</tr>
<tr>
<td>Predicting types of bonds</td>
<td>33</td>
</tr>
<tr>
<td>Chapter 3: The Periodic Table</td>
<td>35</td>
</tr>
<tr>
<td>Repeating Patterns: The Modern Periodic Table</td>
<td>35</td>
</tr>
<tr>
<td>Arranging Elements in the Periodic Table</td>
<td>38</td>
</tr>
<tr>
<td>Grouping metals, nonmetals, and metalloids</td>
<td>38</td>
</tr>
<tr>
<td>Metals</td>
<td>38</td>
</tr>
<tr>
<td>Nonmetals</td>
<td>40</td>
</tr>
<tr>
<td>Metalloids</td>
<td>40</td>
</tr>
<tr>
<td>Arranging elements by families and periods</td>
<td>41</td>
</tr>
<tr>
<td>Chapter 4: Nuclear Chemistry</td>
<td>43</td>
</tr>
<tr>
<td>Seeing How the Atom’s Put Together</td>
<td>43</td>
</tr>
<tr>
<td>Dealing with a Nuclear Breakup: Balancing Reactions</td>
<td>44</td>
</tr>
<tr>
<td>Understanding Types of Natural Radioactive Decay</td>
<td>46</td>
</tr>
<tr>
<td>Alpha emission</td>
<td>47</td>
</tr>
<tr>
<td>Beta emission</td>
<td>48</td>
</tr>
<tr>
<td>Gamma emission</td>
<td>48</td>
</tr>
<tr>
<td>Positron emission</td>
<td>49</td>
</tr>
<tr>
<td>Electron capture</td>
<td>49</td>
</tr>
<tr>
<td>Half-Lives and Radioactive Dating</td>
<td>50</td>
</tr>
<tr>
<td>Calculating remaining radioactivity</td>
<td>51</td>
</tr>
<tr>
<td>Radioactive dating</td>
<td>51</td>
</tr>
<tr>
<td>Breaking Elements Apart with Nuclear Fission</td>
<td>52</td>
</tr>
<tr>
<td>Mass defect: Where does all that energy come from?</td>
<td>52</td>
</tr>
<tr>
<td>Chain reactions and critical mass</td>
<td>53</td>
</tr>
<tr>
<td>Coming Together with Nuclear Fusion</td>
<td>54</td>
</tr>
</tbody>
</table>
Chapter 5: Ionic Bonding .. 55
Forming Ions: Making Satisfying Electron Trades 55
 Gaining and losing electrons 56
 Losing an electron to become
 a cation: Sodium .. 56
 Gaining an electron to become
 an anion: Chlorine 57
Looking at charges on single-atom ions 58
 Seeing some common one-atom ions 58
 Possible charges: Naming ions
 with multiple oxidation states 59
Grouping atoms to form polyatomic ions 61
Creating Ionic Compounds 62
 Making the bond: Sodium metal + chlorine gas =
 sodium chloride 63
Figuring out the formulas of ionic compounds 63
 Balancing charges:
 Magnesium and bromine 64
 Using the crisscross rule 65
Naming ionic compounds 66
 Dealing with multiple oxidation states 66
 Getting names from formulas and
 formulas from names 67
Bonding Clues: Electrolytes
 and Nonelectrolytes 68
Chapter 6: Covalent Bonding 69
Covalent Bond Basics .. 69
 Sharing electrons: A hydrogen example 69
 Why atoms have to share 70
 Representing covalent bonds 71
Comparing covalent bonds with other bonds 71
 Dealing with multiple bonds 72
Naming Covalent Compounds Made of Two Elements 74
Writing Covalent Compound Formulas 75
 Empirical formulas 75
 Molecular or true formulas 75
Structural formulas: Dots and dashes 76
 Basic bonds: Writing the electron-dot
 and Lewis formulas 77
Double bonds: Writing structural
 formulas for C₂H₄O 79
 Grouping atoms with the condensed
 structural formula 81
Electronegativities: Which Atoms Have More Pull? 82
 Predicting the type of bond... 82
 Polar covalent bonding: Creating partial charges 84
 Attracting other molecules: Intermolecular forces... 86

Chapter 7: Chemical Reactions 87
 Reactants and Products: Reading Chemical Equations 87
 Collision Theory: How Reactions Occur 89
 Hitting the right spot... 89
 Adding, releasing, and absorbing energy 90
 Exothermic reactions: Releasing heat 90
 Endothermic reactions: Absorbing heat 92
 Types of Reactions ... 92
 Combination reactions: Coming together 93
 Decomposition reactions: Breaking down............... 93
 Single displacement reactions:
 Kicking out another element .. 93
 Using the activity series ... 94
 Writing ionic and net-ionic equations 94
 Double displacement reactions: Trading places 95
 Precipitation reactions: Forming solids 95
 Neutralization reactions: Forming water 97
 Combustion reactions: Burning 97
 Redox reactions: Exchanging electrons 97
 Balancing Chemical Equations .. 98
 Balancing the Haber process 99
 Balancing the burning of butane.............................. 100

Knowing Chemical Equilibrium
 Backwards and Forwards ... 101
 Matching rates of change in the Haber process 102
 Constants: Comparing amounts
 of products and reactants ... 103

Le Chatelier’s Principle: Getting More
(or Less) Product .. 104
 Changing the concentration .. 104
 Changing the temperature .. 105
 Changing the pressure ... 105

Chemical Kinetics: Changing Reaction Speeds 106
 Seeing How Catalysts Speed Up Reactions 108
 Heterogeneous catalysis: Giving reactants
 a better target... 109
 Homogeneous catalysis: Offering an easier path ... 110
Chapter 8: Electrochemistry: Using Electrons

- Transferring Electrons with Redox Reactions
- Oxidation
- Loss of electrons
- Gain of oxygen
- Loss of hydrogen
- Reduction
- Gain of electrons
- Loss of oxygen
- Gain of hydrogen
- One’s loss is the other’s gain
- Oxidation numbers

Balancing Redox Equations
Exploring Electrochemical Cells

Galvanic cells: Getting electricity from chemical reactions
Electrolytic cells: Getting chemical reactions from electricity
Having it both ways with rechargeable batteries

Chapter 9: Measuring Substances with the Mole

- Counting by Weighing
- Moles: Putting Avogadro’s Number to Good Use
- Defining the mole
- Calculating weight, particles, and moles
- Finding formulas of compounds
- Chemical Reactions and Moles
- Reaction stoichiometry
- Percent yield
- Limiting reactants

Chapter 10: A Salute to Solutions

- Mixing Things Up with Solutes,
 Solvents, and Solutions
- How dissolving happens
- Concentration limits
- Saturated facts
- Understanding Solution Concentration Units
- Percent composition
- Weight/weight percentage
- Weight/volume percentage
- Volume/volume percentage
Table of Contents

Molarity: Comparing solute to solution 141
Diluting solutions to the right molarity 142
Molarity in stoichiometry: Figuring out how much you need 143
Molality: Comparing solute to solvent 143
Parts per million .. 144

Chapter 11: Acids and Bases 145
Observing Properties of Acids and Bases 145
The Bronsted-Lowry Acid-Base Theory 146
Understanding Strong and Weak Acids and Bases 147
Strong: Ionizing all the way 147
Hydrogen chloride and other strong acids 148
Strong bases: Hydroxide ions 149
Weak: Ionizing partially 149
Acetic acid and other weak acids 150
Weak bases: Ammonia ... 152
Acid-Base Reactions: Using the Bronsted-Lowry System 152
Acting as either an acid or base:
 Amphoteric water 153
Showing True Colors with Acid-Base Indicators 154
 Doing a quick color test with litmus paper 154
 Phenolphthalein: Finding concentration with titration 155
Phun with the pH Scale .. 156

Chapter 12: Clearing the Air on Gases 159
The Kinetic Molecular Theory:
 Assuming Things about Gases 159
Relating Physical Properties with Gas Laws 162
 Boyle’s law: Pressure and volume 163
 Charles’s law: Volume and temperature 164
 Gay-Lussac’s Law: Pressure and temperature 165
The combined gas law:
 Pressure, volume, and temp. 166
Avogadro’s Law: The amount of gas 167
The ideal gas equation: Putting it all together 169

Chapter 13: Ten Serendipitous Discoveries in Chemistry 171
Archimedes: Streaking Around 171
Vulcanization of Rubber 172
Molecular Geometry .. 172
Mauve Dye .. 172
Kekulé: The Beautiful Dreamer ... 173
Discovering Radioactivity .. 173
Finding Really Slick Stuff: Teflon ... 173
Stick 'Em Up! Sticky Notes ... 174
Growing Hair ... 174
Sweeter Than Sugar ... 174

Index ... 175