Index

a
accelerometers
 – description 330
 – normalized frequency response 331
 – quasi-static 331
 – resonant 334
 – single-axis 330
acoustic streaming 437
acoustic wave devices 381
air damping
 – Bao’s approach 57
 – cantilever-beam resonator 56
 – energy transfer 56
 – MEMS resonators 56
 – sharp dependence 58
 – shear film damping 57
 – velocities and pressures 57
 – vented resonator 58
 – viscosity 59
AKE, see Akhiezer Effect (AKE)
Akhiezer effect (AKE)
 – extensional mode 67
 – Gruneisen parameter 67
 – MEMS resonators 69
 – quality factor 68
 – silicon carbide 68
 – thermalization 67
AlN-on-Si bulk acoustic resonator 316
Alpha-methylacyl-CoA racemase (AMACR) 414
AMACR, see Alpha-methylacyl-CoA racemase (AMACR)
anchor damping
 – free-free mode 61
 – geometries 62
 – macroscopic perspective 61
 – MHz frequency devices 62
 – resonator motion 61
 – stress waves 62
angular resonance frequency 437
antibody-based bio-recognition 405
aptamers 370
b
BAW, see Bulk-acoustic wave (BAW)
Bernoulli-Euler beam theory 15
bifurcation-based sensing 86
bi-material hygrometric sensors 249
bio-recognition
 – agents, definition 404
 – antibody-based 405
 – aptamers 407
 – nucleic acid-based 405
 – peptide ligands 407
 – phages 407
 – sensor response 407
biosensors, see also cantilever sensors
 – bio-recognition, see bio-recognition
 – fabrication materials 392
 – length scales 403
 – multi-layer geometry 403
 – nucleic acid-based bio-recognition 405
 – proteins, biomarkers and toxins 414
 – single-layer geometry 402
 – virus detection 416
 – whole cells detection 409
Boundary element methods (BEM) 436
broadband energy harvesters
 – Duffing’s type equation 459
 – generator array power spectrum 458
 – linear resonant approach 457
 – mechanical stress 457
 – multimodal/coupled oscillator structures 458
 – nonlinear harvesters 459
 – tuning magnet position 458

Edited by Oliver Brand, Isabelle Dufour, Stephen M. Heinrich and Fabien Josse.
© 2015 Wiley-VCH Verlag GmbH & Co. KGaA. Published 2015 by Wiley-VCH Verlag GmbH & Co. KGaA.
broadband energy harvesters (contd.)
- vibration frequency 460
- Bulk-acoustic wave (BAW)
 - angular gain 342
 - electrostatic mode matching and mode alignment 347
 - elliptical degenerate modes 342
 - ZRO, see Zero-rate output (ZRO)

C
- cantilever beams
 - arbitrary mode number model 44
 - arbitrary mode order 30
 - deflection function 38
 - dynamic response 29
 - finite beam length 50
 - finite-element fluid-structure models 38
 - flexural modes 30
 - flexural oscillation, see flexural oscillation
 - fluid compressibility 46
 - fluid motion 29
 - fluid-structure interaction 30
 - imaginary component ω 42
 - inviscid fluid 29, 38
 - materials and fluids 46
 - microcantilevers 46
 - normalized mode number 39, 41
 - omega and mode number 39
 - relevant length scale 45
 - resonance peaks 49
 - Reynolds number 42
 - scaling analysis 47
 - sound waves 49
 - thermal noise 41, 49
 - torsional modes 40
 - viscosity 29

cantilever designs and sensing systems 379
- cantilever sensors
 - active layers 403
 - array 402
 - inactive layers 403
 - length scales 403
 - multi-layer designs 403
 - piezoelectric microcantilever 403
 - silicon-based 392
 - single-layer 402, 403
 - static/dynamic mode 391
 - T-shaped piezoelectric resonators 403

Capacitive micromachined ultrasonic (CMUT) devices 428
- capacitive resonators
 - actuation and sensing 121
 - circuit models 136, 138
 - electrical isolation 135
- electromechanical force derivation 123
- electroquasistatic approximation 123
- geometry 121
- interfaces, see capacitive sensing interfaces
- microresonators 121
- sensing and motional capacitor topologies, see capacitive sensing and motional capacitor topologies
- transduction 122
- voltage dependent force components 124
- capacitive sensing and motional capacitor topologies
 - angular moving plates 134
 - electrostatic spring softening and snap-in 132
 - parallel-moving plates 127
 - perpendicular moving plates 129
 - capacitive sensing interfaces
 - high-impedance voltage detection 142
 - switched-capacitor detection 142
 - transimpedance amplifier 138
 - capacitive transduction 122
- carbon-based NEMS
 - description 215
 - device geometries 217
 - electron tunneling and mechanical motion 219
 - nanotube device 215
 - position detectors 217
 - Q mechanical resonator layout 217
 - Cauchy-Green deformation tensor 428
 - Ceramic dual in-line packages (CERDIPs) 293
 - Chemical mechanical polishing (CMP) 300
 - chemically sensitive layers
 - aptamer 370
 - inorganic and organic materials 369
 - metal organic frameworks (MOFs) 370
 - polymers 368
 - SAMs 370
 - chopper stabilization 140
 - Complementary metal-oxide-semiconductor (CMOS) process 291
 - complex-valued viscosity 430
 - concave resonator geometry 307
 - conductive and dielectric polymer microresonators 238
 - continuous flow measurement 408
 - continuous systems modeling
 - boundary value problem, vibrating microcantilever 16
 - harmonically excited microcantilever, steady-state response 19
Index

microcantilever, free-vibration response 17
modeling assumptions 15
multiple-degree-of-freedom (MDOF) 14
ordinary differential equations (ODEs) 15
partial differential equations (PDEs) 15
Coriolis force 262, 265
Cryptosporidium parvum 413
damped SDOF oscillator 5
damping ratio 7
damping, resonator sensors 435
3 dB bandwidth method 12
DDM technique, see Dip-dry-measure (DDM) technique
Deep reactive ion etching tools (DRIE) 109, 299
device design, polymeric micromechanical resonators
 – conductive, electrostatic actuation 235
 – dielectric polarization forces 237
 – Lorentz force actuation 239
 – magnetic actuation scheme 239
 – superparamagnetic nanoparticle composite, magnetic actuation 238
device level tuning 317
dielectric polymer, polarization force actuation 236
die-level vacuum-can packaging
 – CERDIPs 293
 – CMOS-only wafers 292
 – disadvantages 293
 – gyroscopes and accelerometers 291
 – individual dies 293
 – laser dicing 292
 – SOI 292
 – stealth dicing process 292
Dip-dry-measure (DDM) technique 408
direct force energy harvesters 456
dissipation mechanisms 55
doping profile engineering 307
double correlated sampling 143
Duffing’s type equation 459
dynamic heating power 174
dynamic magnification factor 9
electrical damping 63
electrical equivalent circuit 434, 435
Electroactive polymers (EAPs) 468
electrodynamic coupling mechanisms 427
electromagnetic transduction 464
electromechanical amplitude modulation 140
electromechanical force derivation 123
electroquasistatic approximation 123
electrostatic spring-softening 335
electrostatic transduction 465
electrothermal actuation, MEMS
 – bending moment 182
 – bent-beam 179
 – bulk actuators 184, 188
 – cantilever 179
 – description 173
 – dog-bone structure 176
 – dynamic components 174
 – dynamic heating power 174
 – electrical circuit 175
 – heaters 183
 – lumped-element modeling 175
 – static heating component 174
 – thermal actuator 177
 – thermal domain 175
 – thermal wave 182
 – U-shape 178
embedded channels
 – fabrication 273
 – fluid density and flow 263, 279
 – micro- and nanoresonators 262
 – nanomechanical resonators 261
 – packaging considerations 275
 – particle mass measurements 262
 – principle 261
 – single particle measurements 271, 279
 – surface-based measurements 280
 – surface reactions 269
 – viscosity 267
energy harvesting devices
 – autonomous electronics system 452
 – broadband type 457
 – direct force type 456
 – frequency conversion 460
 – inertial generators 453
 – nonlinear approaches 471
 – UK’s Energy Harvesting Network 471
Escherichia coli O157:H7 409
eutectic bonding 295
extensional oscillation 37
Index

f
- fabrication 273
- FEM, see Finite element method (FEM) 468
- Finite element modeling (FEM)
 - commercial software packages 101
 - description 97
 - mathematical fundamentals, see mathematical fundamentals, FEM
 - MEMS resonator design, see MEMS resonator design, FEM
 - post-processing 103
 - processing (solution) 103
 - setup (pre-processing) 102
- flexural oscillation
 - Bessel functions 34
 - boundary conditions 31
 - Brownian motion 33
 - centroid 31
 - clamped-clamped beams 32
 - components 32
 - eigenvalues 32
 - flexural mode 37
 - fluid 31
 - gases and liquids 35
 - hydrodynamic load 32, 36
 - Navier-Stokes equation 34
 - parameter 32
 - quality factor 35
 - rectangular cantilever beam 30
 - thermal noise 36
 - torsional modes 36
- fluid channel 383
- fluid density and flow, embedded channels
 - Coriolis force 265
 - flow rates 265
 - internal hydrostatic pressure 264
 - measurements 279
 - microfluidic resonators 263
 - Rayleigh-Ritz method 264
 - sensitivity, vibrating tube 264
- fluid property sensors
 - Cauchy-Green deformation tensor 428
 - measuring methods 431, 432
 - miniaturized rheometers 432, 433
 - resonator 428
 - rheological properties 429–431
 - time-harmonic deformation 431
 - viscosity 427
- fluid viscosity effects, embedded channels 267
- frequency-independent properties 6
- frequency ratio 9
- Frequency response function (FRF) 12
- fusion bonding 295

g
- gas-phase chemical sensors
 - mass-sensitive sensors 374, 377
 - MEMS-based and QCM-based 378
 - MEMS-based resonant microstructures 374
 - resonant microstructures 375
 - resonator designs 377
 - silicon-based resonant cantilever 376
 - volatile organic compounds (VOC) 375
- Giardia lamblia 413
- gravimetric methods 247
- gyroscopes
 - BAW, see Bulk-acoustic wave (BAW)
 - Coriolis acceleration 337
 - Coriolis effect 339
 - description 337
 - drive-loop 339
 - electrostatic sensing 338
 - Foucault pendulum 337
 - mechanical noise 347
 - mode-split vs. mode-matched 340
 - orthogonal and proportional 337
 - rotation-rate sensors 337

h
- Hepatitis B Virus (HBV) 417
- hermetic packaging, MEMS
 - characteristics 287
 - CMOS 291
 - die-level vacuum-can packaging 291
 - die separation 290
 - electrical interconnect techniques 289
 - epi-seal process 299
 - fragile structures 289
 - getters 298
 - hermetic vacuum environment 288
 - pressure-induced damping 288
 - temperature control system 288
 - temperature-induced hysteresis 289
 - thin film encapsulation 296
 - wafer bonding packaging, see wafer bonding packaging
 - high-impedance voltage detection 142
- humidity sensor
 - linear stress-strain relation 249
 - micromechanical SU-8 string resonators 251
 - resonant glass cantilever 249
 - string resonators 248
 - thermal drift 250
– water vapor absorption 247
hygrometric method 248

i
inertial energy harvesters 453
Inertial measurement unit (IMU)
– description 348
– sensor integration 352
– single-die integration 349
– SiP approach 348
– vertical acceleration detection 350
in-plane modes 314

j
Joule effect 467

l
liquid-phase chemical sensors
– acoustic wave devices 381
– cantilevers 379
– microdisk resonators 380
– resonant microstructures 379
liquid trapping 427
Listeria monocytogenes 411, 417
longitudinal viscosity 441
Lorentz forces 77, 239
Low pressure chemical vapor deposition (LPCVD) 299
low-Q polymer micromechanical resonators 234

m
magnetostriction 467
manifold 372
mathematical fundamentals, FEM
– dynamic problems 100
– problem solving steps 97
– static problems 98
MCLR, see Microcystin-leucine-arginine (MCLR)
MEMS, see Micro electro mechanical systems (MEMS)
MEMS-based artificial cochleas 253, 254
MEMS devices, resonator sensors
– cantilever devices 442
– in-plane resonators devices 445
– U-shaped cantilevers 445
MEMS inertial sensors
– accelerometers, see accelerometers
– gyroscopes, see gyroscopes
MEMS resonator design, FEM
– anchor loss/clamping loss 110
– capacitive and piezoelectric electrodes 106
– categories 104
– electrode shapes 108
– electromechanical coupling 106
– extensional modes 108
– filter design 115
– mesh and the mode shape 109
– process-induced variation 108
– silicon block resonator 105
– spurious mode identification and rejection 113
– structural features 104
– thermoelastic damping 112
– transduction mechanism 106
MEMS resonators
– compensation 306
– control of quality factor and compensation 316
– device level tuning 317
– electrostatic tuning 318
– doppler profile engineering 308
– flexural resonators 311
– geometry engineering 307
– integration techniques 305
– particle polarization 312
– performance metrics 305
– piezoelectric tuning 319
– polarization voltage 317
– silicon dioxide 309
– silicon resonators 310
– system-level tuning 320
– TCE 309
– temperature tailoring 312
– thermal effects, compensation 306
– thermal tuning 319
– trimming methods 321
microacoustic sensors 440
micro- and nanocantilevers 15
micromachined cantilever energy harvester 252
Microcystin-leucine-arginine (MCLR) 415
microdisk resonators 380
Micro electro mechanical systems (MEMS)
– comparison, different kinetic energy 469
– EAP 468
– electromagnetic transduction 464
– electrostatic transduction 465
– ferroelectrets 468
– hermetic packaging, see hermetic packaging, MEMS
– magnetostriction 467
– mechanical properties 452
– piezoelectric transduction 462
– scaling laws 471
– vacuum encapsulation 470
micromechanical resonators 55
– frequency-specific audio waves 234
micromechanical resonators (contd.)
– Si sensor, polymer coating 234
– Young's modulus 234
moment of inertia 16
motional resistance 137

n
Nano-electromechanical systems (NEMS)
– amplifier boosts 207
– bifurcation 206
– bio-NEMS 219
– cantilevers 208
– carbon nanotubes 210
– catalyst material 210
– CMOS technology 209
– description 203
– design 221
– electron beam lithography 209
– fabrication process 209
– frequency noise 204
– fundamental and characteristic properties 203
– graphene 222
– mass-sensing experiments 204
– mechanical properties 208
– motional signal 206
– nanochannels 211
– nanopiezotronics 221
– nanoscale-photonic circuit 207
– nonlinear and complex dynamics 204
– out-of-plane movement 222
– piezomaterials 220
– silicon 208
– transduction efficiencies 206
Navier-Stokes equations 437
neo-Hookean materials 428
Newtonian liquid 429
nonlinear harvesters 459
nonlinear MEMS/NEMS applications
– bistable mechanical resonator 213
– cantilevers 213
– detrimental noise 213
– duffing nonlinearity 215
– Euler buckling 215
– geometric nonlinearity 215
– microresonators 215
– multi-bit logic, doubly-clamped resonator 216
– nonlinear resonance 213
– parametric instability 215
– sensors and actuators 212
non-MEMS device 470
Normalized power density (NPD) 470
nucleic acid-based bio-recognition 405

o
organic resonant MEMS devices
– high-Q resonator 233
– intrinsic energy loss 234
– micromechanical sensors 233
– quartz crystal microbalances (QCM) 234
– silicon-based micro gas sensors 233

p
packaging
– commercial chemical sensors 371
– designs 373
– manifolds 372
– non-electrical signals 371
– Sensirion humidity sensors 372
– vacuum-encapsulated resonator 373
packaging considerations, embedded channels 275
paramagnetic microcantilevers 238
parametric excitation
– amplitude-state controller 88
– bifurcation control 88
– device modeling 74
– dimensional and nondimensional parameters 79
– dynamic behavior 80
– electrical/mechanical system 73
– electrostatically-actuated systems 75
– equation of motion 79
– inertial sensing 86
– Lorentz forces 77
– Mathieu equation 73
– micro- and nanosystems 74
– microbeams 85
– micromirror actuation 87
– micro/nanoresonators 74
– microresonator 76
– microscanners 75
– modeling and analysis techniques 77
– nonlinear frequency response 83
– nonlinearities 82
– physical mechanism 78
– Piezoelectric elements 77
– resonant vibrations 81
– shaped-finger comb geometry 76
– sources 77
– thermomechanical noise 84
– voltage changes 75
parametric excitation: "wedge of instability" 80
PEMC sensors, see Piezoelectric-excited
millimeter-sized cantilever (PEMC) sensors
Perfectly matched layers (PML) 111
Physical vapor deposition (PVD) techniques 147
Piezoelectric-excited millimeter-sized cantilever (PEMC) sensors 409
piezoelectric resonant MEMS
– beam/plate 159
– clamped-clamped beam 160
– coefficients 150
– devices 147
– electromechanical coupling coefficient 158
– flexural vibrations 159
– kinetic energy 155
– lumped circuit model 154
– mass and stiffness 161
– mechanical vibrations 151
– one-port piezoelectric resonator 156
– parameters 156
– piezoelectric devices vs. frequency 148
– resonator electrodes 156
– sensing electrode 161
– strain-charge form 149
– stress-charge form 150
– two-port piezoelectric resonator 157
piezoelectric transduction 462
piezoelectric tuning 319
piezoresistive sensing
– base resistance 185
– crystalline silicon structure 190
– electronic oscillator 189
– feedback loop 190
– implementations 185
– in-plane flexural modes 187
– out-of-plane 187
– output signal 189
– single-crystalline silicon 186
– stress and strain 185
– temperature coefficient 187
– thermal excitation resistors 188
polarization voltage 125
prostate cancer biomarker
– alpha-methylacyl-CoA racemase (AMACR) 414
– prostate specific antigen 414
Pyrex®-wafer 295
Q-factor 7, 437
quality factor, polymeric micromechanical resonators
– energy stored vs lost, oscillation 243
– generic bending related damping mechanisms 247
– intrinsic material damping 247
– micro/nanomechanical string 245
– relaxed resonators, vacuum 242
– unrelaxed resonators, vacuum 243
– viscous environment 242
Quartz Crystal Microbalance (QCM) 269, 432
quasi-static accelerometers
– description 332
– dissipative effect 332
– electromechanical transduction 333
– mechanical noise 334
– squeeze-film air damping effect 332
– tri-axial accelerometer 333
quasi-static polymeric micromechanical sensors 233
Rayleigh-Ritz method 264
resonant accelerometers
– acceleration sensitivity 336
– electrostatic spring-softening 335
– frequency oscillators 334
– Q capacitive beam resonator 335
resonant amplification method 11
resonant chemical gas sensor performances 382
resonant gate transistor 287
resonant MEMS chemical sensors
– advantages 355
– chemical domain 356
– chemical sensitivity 364
– chemical sensor 364
– coated microcantilevers 355
– components 356
– limit of detection (LOD) 366
– long-term sensor drift 367
– mass-sensitive 365
– microcantilevers 357
– quality factor 363
– resonant frequency 362
– resonant microcantilever chemical sensors, see resonant microcantilever chemical sensors
– sensing film 364
– signal processing 357
– transducer effects 356
resonant MEMS devices
– cantilevers and doubly clamped members 23
– continuous systems modeling, see continuous systems modeling
– in-plane deformation, slender circular rings 26
– natural frequency formulas 24
– nomenclature 4
Index

resonant MEMS devices (contd.)
 – SDOF systems, see
 Single-degree-of-freedom (SDOF) systems
 – transverse deflection 25
 – resonant microcantilever chemical sensors
 – base layer 360
 – flexural rigidity 358
 – hydrodynamic function 359
 – microcantilever chemical sensor platform 357
 – polymer layer 361
 – time-variant neutral axis location 359
 – viscoelastic coating 358
 resonator equivalent electrical circuit and optimization
 – actuator beam dimensions 196
 – electrical resistivity and material properties 196
 – optimization 195
 – quality factor 195
 – resonance frequency and resonator scaling 196
 resonator sensors
 – accuracies and sensitivities 438
 – characterization process 439
 – comparison 443, 446
 – damping 435
 – doubly (or multiply) clamped 438
 – eigenmode decomposition 433, 434
 – electrical equivalent circuit 434, 435
 – excitation and readout 433
 – fluid-structure interaction 436, 437
 – membrane devices 438
 – MEMS devices, see MEMS devices, resonator sensors
 – microacoustic devices 440, 441
 – resonant MEMS devices 438
 – singly clamped 438
 – suspended silicon based microchannel resonator 440
 – temperature 439
 rheometers 431, 432
 robustness 409

s
 sacrificial layer methods 273
 SDOF systems, see Single-degree-of-freedom (SDOF) systems
 Self-assembled monolayers (SAMs) 370
 sensor chips 373
 shear rheometer 429
 shear-thickening effect 428
 silanization modification 405
 Silicon bulk acoustic resonator (SiBAR) 307
 silicon cantilevers 380
 Silicon-on-insulator (SOI) 109, 292, 299
 single cell measurements 279
 single particle measurements 271, 279
 Single-degree-of-freedom (SDOF) systems
 – free vibration 6
 – harmonically forced vibration 8
 – quality factor contributions from multiple sources 13
 Stanford epi-seal process
 – CMP 300
 – dies separation 301
 – DRIE 299
 – epitaxial polysilicon deposition 300
 – HF vapor release etch 300
 – LPCVD 299
 – oxide sacrificial material 299, 300
 – processing costs 302
 – SOI 299
 Staphylococcal enterotoxin B (SEB) 415
 static heating component 174
 stealth dicing process 292
 Surface acoustic wave (SAW)
 – devices 151
 – sensors 381
 – surface damping
 – gyroscopes/timing resonators 60
 – MEMS structures 59
 – surface loss mechanism 59
 – thickness 59
 – two-level energy systems 60
 – ultrathin silicon cantilever-beam resonators 60
 Surface plasmon resonance (SPR) instruments 269
 System-in-package (SiP) 348
 system-level tuning 320

Ted, see Thermoelastic dissipation (TED)
 Temperature-compensated crystal oscillators (TCXO) 307
 tethers 316
 thermally actuated resonant MEMS
 – cantilever structures 197
 – disk resonators 198
 – thermal tuning 319
 Thermoelastic damping (TED) 110, 112, 316
 Thermoelastic dissipation (TED)
 – cantilevers 65
 – expansion and cooling 64
 – mechanical and thermal domains 65
 – MEMS resonator 66, 67
– microfabrication processes 65
– strains 64
– thermal mode 66
thermo-electro-mechanical modeling
– ohmic power generation 193
– thermal-piezoresistive resonator 193
– transfer function 194
Thermo-rheological complex (TRC) fluids 431
thickness-extensional and shear vibrations 168
thin film encapsulation-based packaging 296
Thin-piezoelectric-on-substrate (TPoS) 314
thiolated DNA probes 405
time-harmonic deformation 431, 432
tip-force-actuated cantilever beam 22
transimpedance amplifier 138
u
underdamped SDOF system 7
U-shaped cantilevers 445
v
vibrational energy harvesting
– micromechanical cantilever 252
– piezoelectric cantilever resonators 252
vibrational nodes 18
Villari effect 467
virus detection, biosensors
– gene signature 417
– microRNAs (miRNAs) 416
– silicon cantilevers 416
– toxin-associated Genes, without DNA amplification 417
viscosity 427
w
wafer bonding packaging
– anodic bonding 295
– CMOS 294
– definition 294
– fusion bonding 295
– processing costs 296
– silicon wafer 294
– temperature-induced errors 294
– thermal expansion coefficient 294
– wafer-wafer bonding 294
– wet etching methods 294
wafer-level packaging
– fabrication 290
– thin-film encapsulation 290
– wafer bonding, see wafer bonding packaging
wet etching methods 294
whole cells detection 409
width-extensional vibrations
– AlN plate 164
– description 163
– electrode 163
– piezoelectric plate 163
– resonator motional resistance 166
Williams-Landel-Ferry (WLF) model 431
y
yield stress 428
z
Zero-rate output (ZRO)
– cancellation 345
– Coriolis response 343
– electromechanical transduction 345
– mode-to-mode coupling 345
– sense-mode 343
ZRO, see Zero-rate output (ZRO)