Contents

About the Editors XVII
Preface XIX
List of Contributors XXI

Volume 1

1 Basic HPLC Theory and Definitions: Retention, Thermodynamics, Selectivity, Zone Spreading, Kinetics, and Resolution 1
Torgny Fornstedt, Patrik Forssén, and Douglas Westerlund
1.1 Basic Definitions 2
1.1.1 Basic Retention Models and Kinetics 6
1.1.2 Band Broadening and the Plate Height Concept 7
1.1.3 Sources of Zone Broadening 9
1.1.3.1 Eddy Diffusion 10
1.1.3.2 Molecular Diffusion 10
1.1.3.3 Slow Equilibration 10
1.1.4 Dependence of Zone Broadening on Flow Rate 11
1.2 Resolution 12
1.3 Modern Trends in Liquid Chromatography 14
1.3.1 Efficiency Trend 15
1.3.2 Permeability Trend 17
1.3.3 Selectivity and New Material Trend 19
1.4 Conclusions 21
References 22

2 Basic LC Method Development and Optimization 25
Victoria F. Samanidou
2.1 Introduction 25
2.2 Theoretical Aspects 26
2.2.1 Retention Factor k 27
2.2.2 Selectivity α 27
2.2.3 Peak Asymmetry 27
<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.2.4 Efficiency of Chromatographic Column and Theoretical Plates</td>
<td>27</td>
</tr>
<tr>
<td>2.2.5 Resolution R_s</td>
<td>28</td>
</tr>
<tr>
<td>2.2.6 The Fundamental vanDeemter Equation</td>
<td>29</td>
</tr>
<tr>
<td>2.3 Controlling Resolution</td>
<td>30</td>
</tr>
<tr>
<td>2.3.1 How to Improve N</td>
<td>32</td>
</tr>
<tr>
<td>2.3.1.1 Physical Characteristics of Packing Material</td>
<td>32</td>
</tr>
<tr>
<td>2.3.2 Increase of k</td>
<td>33</td>
</tr>
<tr>
<td>2.3.3 Factors Influencing Selectivity or How to Improve α</td>
<td>33</td>
</tr>
<tr>
<td>2.3.3.1 Optimization of Mobile-Phase Composition</td>
<td>34</td>
</tr>
<tr>
<td>2.3.3.2 pH Control, Ion-Pair Reagents, and Other Additives</td>
<td>35</td>
</tr>
<tr>
<td>2.3.3.3 Temperature</td>
<td>35</td>
</tr>
<tr>
<td>2.3.3.4 Stationary Phase and Column Selection</td>
<td>35</td>
</tr>
<tr>
<td>2.3.3.5 Stationary Phase and Packing Material Composition</td>
<td>36</td>
</tr>
<tr>
<td>2.4 Method Development Strategy</td>
<td>37</td>
</tr>
<tr>
<td>2.4.1 Gradient Elution versus Isocratic</td>
<td>38</td>
</tr>
<tr>
<td>2.4.2 Other Parameters in LC Method Development</td>
<td>38</td>
</tr>
<tr>
<td>2.5 Current and Future Trends</td>
<td>39</td>
</tr>
<tr>
<td>2.5.1 Two-Dimensional Chromatography</td>
<td>39</td>
</tr>
<tr>
<td>2.6 Conclusions</td>
<td>40</td>
</tr>
</tbody>
</table>

3 Recent Advances in Column Technology 43
Ross Andrew Shalliker and Danijela Kocic

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.1 Introduction</td>
<td>43</td>
</tr>
<tr>
<td>3.2 Column Packing: Downward Slurry Packing</td>
<td>45</td>
</tr>
<tr>
<td>3.3 Column Bed Heterogeneity</td>
<td>46</td>
</tr>
<tr>
<td>3.3.1 Axial Heterogeneity</td>
<td>46</td>
</tr>
<tr>
<td>3.3.2 Radial Heterogeneity and the Wall Effect</td>
<td>49</td>
</tr>
<tr>
<td>3.4 Active Flow Technology: A New Design Concept in Chromatography Columns</td>
<td>51</td>
</tr>
<tr>
<td>3.4.1 AFT Columns: Parallel Segmented Flow</td>
<td>51</td>
</tr>
<tr>
<td>3.4.2 AFT Columns: Curtain Flow</td>
<td>52</td>
</tr>
<tr>
<td>3.4.3 Performance of AFT Columns</td>
<td>53</td>
</tr>
<tr>
<td>3.4.3.1 Sensitivity</td>
<td>53</td>
</tr>
<tr>
<td>3.4.3.2 Efficiency</td>
<td>54</td>
</tr>
<tr>
<td>3.4.3.3 Speed</td>
<td>58</td>
</tr>
<tr>
<td>3.5 Summary</td>
<td>60</td>
</tr>
<tr>
<td>References</td>
<td>61</td>
</tr>
</tbody>
</table>

4 Hydrophilic Interaction Liquid Chromatography 63
Xinmiao Liang, Aijin Shen, and Zhimou Guo

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>4.1 Introduction</td>
<td>63</td>
</tr>
<tr>
<td>4.2 Separation Mechanism in HILIC</td>
<td>64</td>
</tr>
<tr>
<td>4.3 Stationary Phases for HILIC</td>
<td>67</td>
</tr>
<tr>
<td>4.3.1 Conventional NPLC Stationary Phases for HILIC</td>
<td>67</td>
</tr>
</tbody>
</table>
4.3.2 Stationary Phases Developed for HILIC
4.3.2.1 Polyaspartamide-Based Stationary Phases
4.3.2.2 Amide-Based Stationary Phases
4.3.2.3 Saccharides-Based Stationary Phases
4.3.2.4 Zwitterionic Stationary Phases
4.4 Application of HILIC
4.4.1 Application in the Pharmaceutical Field
4.4.2 Application in the Separation of Carbohydrates
4.4.3 Application in Proteome, Glycoproteome, and Phosphoproteome
4.4.4 Application in Metabolomics/Metabonomics
4.5 Conclusions and Outlook

5 LC–MS Interfaces
Pierangela Palma, Elisabetta Pierini, and Achille Cappiello

5.1 Introduction
5.2 API Sources
5.2.1 Electrospray Interface (ESI)
5.2.1.1 Principles of Operation and Ion Formation
5.2.1.2 Factors Influencing ESI Response
5.2.1.3 Modes of Operation
5.2.2 Atmospheric Pressure Chemical Ionization
5.2.3 Atmospheric Pressure Photoionization
5.2.4 Atmospheric Pressure Laser Ionization
5.3 Non-API Sources
5.3.1 Direct-EI
5.3.2 EI of Cold Molecules in Supersonic Molecular Beam (SMB)
5.3.3 Combined Single-Photon Low-Pressure Photoionization and EI Ionization
5.3.4 LC/DESI–MS Interface

6 LC–MS Applications in Environmental and Food Analysis
Alessandra Gentili, Fulvia Caretti, and Virginia Pérez Fernández

6.1 Introduction
6.2 Environmental Applications
6.2.1 Last Trends in Sample Preparation for LC–MS Analysis
6.2.2 Advances and Trends in Liquid Chromatography
6.2.3 Advances and Trends in Mass Spectrometry
6.3 Food Toxicant Applications
6.3.1 Recent Trends in Sample Preparation for LC–MS Analysis
6.3.2 Recent Trends in LC–MS Screening Analysis
6.3.3 Recent Trends in LC–MS Confirmatory Analysis 120
6.4 Foodomics as a Recent Approach Embracing Metabolomics, Proteomics, and Lipidomics 121

6.4.1 Food Proteomics 121
6.4.2 Food Metabolomics 124
6.4.3 Food Lipidomics 125
6.5 Trends and Future Developments 127
References 128

7 Solvents in Chromatography and Electrophoresis 135
Alain Berthod and Karine Faure

7.1 Introduction 135
7.2 Physicochemical Properties of Solvents 135
7.2.1 Melting and Boiling Points, and Vapor Pressure 135
7.2.2 Molecular Weight, Density, and Molar Volume 136
7.2.3 Viscosity, Surface Tension, UV Cutoff, and Refractive Index 136
7.2.4 Solvent Polarity Scales 137
7.2.5 New Solvents 142
7.3 Physicochemical Properties of Mixtures of Solvents 143
7.3.1 Fully Miscible Solvents 143
7.3.2 Nonfully Miscible Solvents and Phase Diagrams 144
7.3.3 Solvent Mixtures and Chromatographic Retention Times: Elution Strength 146
7.4 Mobile-Phase pH and Buffers 147
7.4.1 pH Definition 147
7.4.2 pH in Hydro-organic Mobile Phases 147
7.4.3 pKₐ Shifts in Hydro-organic Mobile Phases 148
7.5 Conclusions 151
Acknowledgments 157
References 157

8 Reversed Phase Liquid Chromatography 159
Maria C. García-Alvarez-Coque, Juan J. Baeza-Baeza, and Guillermo Ramis-Ramos

8.1 Introduction 159
8.2 The Stationary Phase 160
8.2.1 Silica Support and Chemical Bonding 161
8.2.2 Types of Phases 163
8.2.3 Silanol Effects 164
8.2.4 Silanol Deactivation 166
8.3 The Mobile Phase 167
8.3.1 Mobile Phase Components 167
8.3.2 Snyder’s Solvent Selectivity Triangle 168
8.3.3 Control of the Mobile-Phase pH 170
8.4 Temperature as Chromatographic Factor 172
8.5 Gradient versus Isocratic Elution 174
8.5.1 Solute Retention and Peak Width 174
8.5.2 Isocratic Elution 175
8.5.3 Gradients of Modifier: The Usual Solution for the General Elution Problem 175
8.5.4 Development of Gradients of Modifier 176
8.5.5 Strengths and Weaknesses of Gradients of Modifier 179
8.5.6 Other Types of Gradients 181
8.6 Attempts to Explain the Retention Mechanisms in RPLC 181
8.6.1 Solvent Adsorption and Partitioning in RPLC 181
8.6.2 The Solvophobic Theory 182
8.6.3 Solute Adsorption or Partitioning? 183
8.6.4 Investigating How RPLC Really Works 184
8.6.5 Going Down to the Molecular Detail 186
8.6.5.1 Chain Conformation 186
8.6.5.2 Adsorption and Partitioning of Common Solvents 186
8.6.5.3 Adsorption and Partitioning of Solutes 188
8.6.5.4 Anomalous Behavior with Highly Aqueous Mobile Phases 189
8.7 Development and Trends in RPLC 190
References 192

9 Modeling of Retention in Reversed Phase Liquid Chromatography 199
Maria C. García-Alvarez-Coque, Guillermo Ramírez-Ramos, José R. Torres-Lapasió, and C. Ortiz-Bolsico
9.1 Introduction 199
9.2 Isocratic Elution 199
9.2.1 Polynomial Models to Describe Retention Using Modifier Content as a Factor 199
9.2.2 Polarity Models 201
9.2.3 pH as an Experimental Factor 202
9.3 Dead Time Estimation 206
9.3.1 Static Methods 207
9.3.2 Dynamic Methods 207
9.4 Effect of Temperature 209
9.4.1 Van’t Hoff Equation 209
9.4.2 Combined Effect of Modifier Content, pH, and Temperature 210
9.5 Effect of Pressure 211
9.5.1 Deviations of Retention Factors 211
9.5.2 Correction of Pressure Effects 212
9.6 Enhancing the Prediction of Retention 214
9.6.1 Practical Considerations 214
9.6.2 Influence of the Model Regression Process on the Quality of Predictions 215
9.7 Gradient Elution 216
9.7.1 Integration of the Fundamental Equation for Gradient Elution 216
9.7.2 Nonintegrable Retention Models 217
9.8 Computer-Assisted Interpretive Optimization 218
9.9 Stationary-Phase Characterization 220
9.9.1 Linear Solvation Energy Relationships 220
9.9.2 Local Models for Characterizing RPLC Columns 221
References 223

10 Normal-Phase and Polar Organic Solvents Chromatography 227
Ahmed A. Younes, Charlene Galea, Debby Mangelings, and Y. Vander Heyden
10.1 Introduction 227
10.2 HPLC Retention and Separation Mechanisms 228
10.2.1 Polarity-Based Separations 228
10.2.2 Charge-Based Separations 232
10.2.3 Size-Based Separations 232
10.2.4 Other Separation Mechanisms 232
10.3 Normal-Phase and Polar Organic Solvents Chromatography 233
10.3.1 Retention Mechanism 234
10.3.2 Stationary Phases 234
10.3.2.1 Nonbonded Phases 234
10.3.2.2 Bonded Phases 235
10.3.2.3 Stationary Phases and Selectivity 236
10.3.3 Mobile Phases 238
10.3.3.1 Mobile-Phase Selection 238
10.3.3.2 Solvent Strength and Selectivity 239
10.3.3.3 Isocratic and Gradient Elution 241
10.4 Conclusions 242
References 243

11 Inline Detectors 245
Ramisetti Nageswara Rao and Pothuraju Nageswara Rao
11.1 Introduction 245
11.2 Detector Characteristics 246
11.2.1 Sensitivity 246
11.2.2 Selectivity 246
11.2.3 Linearity 247
11.2.4 Dynamic Range 247
11.2.5 Detector Cell Volume 247
11.3 UV-Visible Absorbance Detector 247
11.3.1 Fixed Wavelength Detector 249
11.3.2 Variable Wavelength Detector 250
11.4 Photodiode Array Detector (PDA) 251
11.5 Fluorescence Detector 252
11.6 Refractive Index Detector (RID) 255
11.7 Evaporative Light-Scattering Detector 256
11.8 Electrochemical Detector 257
11.9 Charged Aerosol Detection 258
11.10 Conductivity Detector 259
11.11 Coupling Detectors 260
11.12 Comparison of HPLC Detectors 260
References 261

12 pH Effects on Chromatographic Retention Modes 263
 Pawel Wiczling, Łukasz Kubik, and Roman Kalisz
12.1 Introduction 263
12.2 pH Measurements of Mobile Phase 264
12.3 Effect of pH on Isocratic Retention 266
12.4 pH Effect on Organic Modifier Gradients 268
12.5 pH Gradient 269
12.6 Determination of pK_a, log k_w (Hydrophobicity), and S 274
12.7 Effect of pH in Normal-Phase Mode 275
12.8 Summary 277
References 277

13 Chemometrics in Data Analysis and Liquid Chromatographic Method Development 279
 Biljana Jančić-Stojanović and Tijana Rakić
13.1 Introduction 279
13.2 Chemometrics in Data Analysis 280
13.2.1 Data Preprocessing 280
13.2.2 Data Analysis 284
13.3 Chemometrics in LC Method Development 285
13.3.1 Analytical Target Profile and Critical Quality Attributes (Definition of the Objectives of the Method) 286
13.3.2 Quality Risk Assessment and Critical Process Parameters (Definition of Investigated Factors and Their Levels) 287
13.3.3 Investigation of the Knowledge Space (Selection of an Appropriate Experimental Design) 288
13.3.3.1 Screening Designs 289
13.3.3.2 Optimization Designs 291
13.3.4 Critical Quality Attributes Modeling (Creation of Mathematical Models) 293
13.3.5 Design Space 294
13.3.6 Selection of the Working Points 295
13.3.7 Robustness Testing 295
13.4 Conclusions 296
References 296

Index to Volume 1 11-118
<table>
<thead>
<tr>
<th>Part One</th>
<th>Special Liquid Chromatography Modes</th>
<th>299</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Chiral Liquid Chromatography: Recent Applications with Special Emphasis on the Enantioseparation of Amino Compounds</td>
<td>301</td>
</tr>
<tr>
<td></td>
<td>István Ilisz</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>Chiral Separation of Some Classes of Pesticides by HPLC Method</td>
<td>321</td>
</tr>
<tr>
<td></td>
<td>Imran Ali, Iqbal Hussain, Mohd Marsin Sanagi, and Hassan Y. Aboul-Enein</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>Micellar Liquid Chromatography: Fundamentals</td>
<td>371</td>
</tr>
<tr>
<td></td>
<td>Maria C. García-Alvarez-Coque, Maria J. Ruiz-Angel, and Samuel Carda-Broch</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>Micellar Liquid Chromatography: Method Development and Applications</td>
<td>407</td>
</tr>
<tr>
<td></td>
<td>Maria C. García-Alvarez-Coque, Maria J. Ruiz-Angel, and Samuel Carda-Broch</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>Affinity Chromatography</td>
<td>461</td>
</tr>
<tr>
<td></td>
<td>Erika L. Pfaunmiller, Jesbaniris Bas, Marissa Brooks, Mitchell Milanuk, Elliott Rodriguez, John Vargas, Ryan Matsuda, and David S. Hage</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>Immunoaffinity Chromatography: Advantages and Limitations</td>
<td>483</td>
</tr>
<tr>
<td></td>
<td>Nancy E. Thompson and Richard R. Burgess</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Part Two</th>
<th>Capillary Electromigration Techniques</th>
<th>503</th>
</tr>
</thead>
<tbody>
<tr>
<td>7</td>
<td>Capillary Electromigration Techniques: Capillary Electrophoresis</td>
<td>505</td>
</tr>
<tr>
<td></td>
<td>Václav Kašička</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>Modern Injection Modes (Stacking) for CE</td>
<td>531</td>
</tr>
<tr>
<td></td>
<td>Joselito P. Quirino</td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>Capillary Gel Electrophoresis</td>
<td>555</td>
</tr>
<tr>
<td></td>
<td>Márta Kerékgyártó and András Guttman</td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>Nonaqueous Capillary Electrophoresis</td>
<td>581</td>
</tr>
<tr>
<td></td>
<td>Julie Schappler and Serge Rudaz</td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>Detectors in Capillary Electrophoresis</td>
<td>607</td>
</tr>
<tr>
<td></td>
<td>Petr Túma and František Opekar</td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>Trends in CE-MS and Applications</td>
<td>629</td>
</tr>
<tr>
<td></td>
<td>Anna Tycova and Frantisek Foret</td>
<td></td>
</tr>
<tr>
<td>13</td>
<td>Capillary Electrochromatography</td>
<td>653</td>
</tr>
<tr>
<td></td>
<td>Kai Zhang and Ruyu Gao</td>
<td></td>
</tr>
<tr>
<td>Page</td>
<td>Title</td>
<td>Authors</td>
</tr>
<tr>
<td>------</td>
<td>--</td>
<td>---</td>
</tr>
<tr>
<td>14</td>
<td>Micellar Electrokinetic Chromatography</td>
<td>Paolo Iadarola, Marco Fumagalli, and Simona Viglio</td>
</tr>
<tr>
<td>15</td>
<td>Chip-Based Capillary Electrophoresis</td>
<td>Yuanhong Xu, Jizhen Zhang and Jingquan Liu</td>
</tr>
<tr>
<td>16</td>
<td>Chiral Separations by Capillary Electrophoresis</td>
<td>E. Sánchez-López, M. Castro-Puyana, M.L. Marina, and A.L. Crego</td>
</tr>
</tbody>
</table>

Index to Volume 2 I1-I24

Volume 3

1. Gas Chromatography: Theory and Definitions, Retention and Thermodynamics, and Selectivity 775
 Glenn E. Spangler

2. Basic Overview on Gas Chromatography Injectors 807
 Md. Musifur Rahman, A.M. Abd El-Aty, and Jae-Han Shim

3. Basic Overview on Gas Chromatography Columns 823
 Md. Musifur Rahman, A.M. Abd El-Aty, Jeong-Heui Choi, Ho-Chul Shin, Sung Chul Shin, and Jae-Han Shim

4. Overview of Detectors in Gas Chromatography 835
 Md. Musifur Rahman, A.M. Abd El-Aty, and Jae-Han Shim

5. Current Use of Gas Chromatography and Applications 849
 Walter Vetter

6. Gas Chromatography with Mass Spectrometry (GC-MS) 883
 Walter Vetter

7. Chiral GC 927
 Volker Schurig

8. New Essential Events in Modern Applications of Inverse Gas Chromatography 979
 Adam Voelkel, Henryk Grajek, Beata Strzemiecka, and Katarzyna Adamska

9. Chip-Based Gas Chromatography 999
 Hamza Shakeel and Masoud Agah
Portable Gas Chromatography 1021
Philip A. Smith

Packed Column Sub- and Supercritical Fluid Chromatography 1051
Caroline West, Syame Khater, and Eric Lesellier

Instrumentation for Sub- and Supercritical Fluid Chromatography 1075
Taghi Khayamian, Ali Daneshfar, and Hassan Ghaziaaskar

Index to Volume 3 II-II8

High-Performance Thin-Layer Chromatography 1093
Vicente L. Cebolla, Luis Membrado, Carmen Jarne, and Rosa Garriga

Field Flow Fractionation 1143
Gaëtane Lespes, Julien Gigault, and Serge Battu

Separations with a Liquid Stationary Phase: Countercurrent Chromatography or Centrifugal Partition Chromatography 1177
Alain Berthod and Karine Faure

Preparative Chromatography: Batch and Continuous 1207
José P.S. Aniceto and Carlos M. Silva

Fast and Miniaturized Chromatography 1315
Bárbara Socas-Rodríguez, Antonio V. Herrera-Herrera, Miguel Ángel González-Curbelo, Javier González-Sálamo, and Javier Hernández-Borges

Two-Dimensional Liquid Chromatography 1357
Morgan Sarrut, Nicola Marchetti, and Sabine Heinisch

Index to Volume 4 II-II4

Sampling Strategies: Statistics of Sampling 1385
Małgorzata Bodnar, Piotr Konieczka, and Jacek Namieśnik

Targeted and Non-Targeted Analysis 1401
Luis E. Rodríguez-Saona, Marçal Plans Pujoltras, and M. Monica Giusti
3 Conventional Extraction Techniques: Soxhlet and Liquid–Liquid Extractions and Evaporation 1437
Adegbenro Peter Daso and Okechukwu Jonathan Okonkwo

4 Main uses of Microwaves and Ultrasounds in Analytical Extraction Schemes: an Overview 1469
Idaira Pacheco-Fernández, Providencia González-Hernández, Priscilla Rocio-Bautista, María José Trujillo-Rodríguez, and Verónica Pino

5 Membrane-assisted Separations 1503
Jan Åke Jönsson

6 Dispersive Solid-Phase Extraction 1525
Bárbara Socas-Rodríguez, Antonio V. Herrera-Herrera, María Asensio-Ramos, and Javier Hernández-Borges

7 Solid-Phase Extraction 1571
Nil Ozbek, Asli Baysal, Suleyman Akman, and Mehmet Dogan

8 Solid-Phase Microextraction 1595
Ali Mehdinia and Mohammad Ovais Aziz-Zanjani

9 Liquid-Phase Microextraction 1625
Mohammad Reza Ganjali, Morteza Rezapour, Parviz Norouzi, and Farnoush Faridbod

10 Analytical Supercritical Fluid Extraction 1659
Julian Martínez and Ana Carolina de Aguiar

11 Extraction Methods Facilitated by the use of Magnetic Nanoparticles 1681
Priscilla Rocio-Bautista and Verónica Pino

12 Sample Derivatization in Separation Science 1725
Pascal Cardinael, Hervé Casabianca, Valerie Peulon-Agasse, and Alain Berthod

13 Validation of Analytical Methods Based on Chromatographic Techniques: An Overview 1757
Juan Peris-Vicente, Josep Esteve-Romero, and Samuel Carda-Broch

14 “Omics” and Biomedical Applications 1809
Pasquale Ferranti, Chiara Nitride, and Monica Gallo

15 Food Applications: Using Novel Sample Preparation Modes 1859
Mónica González and Venerando González
Contents

16 Forensic Applications 1877
Matías Calcerrada Guerreiro, María López-López,
Mª Ángeles Fernández de la Ossa, and Carmen García-Ruiz

17 Environmental Applications of Solid Phase Microextraction Techniques 1897
Sarah Montesdeoca-Esponda, M Esther Torres-Padrón, Zoraida Sosa-Ferrera,
and José Juan Santana-Rodríguez

Index to Volume 5 111-120

Index 1929