Index to Volume 1

a
Abraham’s LSER approach 221
absorption
– detectors 248
– UV/visible light 252
abundant fragmentation 101
accuracy 38
– mass measurement 111
acetaminophen 59
acetone 45
acetonitrile (ACN) 21, 34, 37, 63, 75, 168, 174, 187, 188, 230
– organic modifier 138
– toxic 168
– water mixtures 201
– water mobile phases 143, 187
– water solutions 143
acid-base behavior 202
acid–base dissociation constant 202
acid-base systems 93
acidic compounds, loses 263
acidity-basicity character 170
ACN/buffer mobile phases 145
active flow technology (AFT)
– columns 44, 51
– curtain flow 52–54, 58
– efficiency 54, 57, 58
– illustration of AFT end fitting 51–54, 58
– parallel segmented flow 51–54, 58
– performance of AFT columns 53
– sensitivity 53, 54, 58
– speed 58
AC voltage 259
additives 35
adsorption 4, 21, 183
– chromatography 26
– isothersms 3, 4
aerosol generation 257
affinity chromatography (AC) 26, 232
agglomerates 45
air-driven fluid pump 45
alcohols 34, 35
aldicarb sulfoxide 120
alkaline eluants 235
alkaline hydrolysis 75
alkyl chain phases 163
alkyl ether sulfates 115
alkyl ligand 167
alkylsilane 20
– surfaces 161
alkyl stationary phases 163
alkyl sulfates 115
alkyne–azide click chemistry 76
allergens 123
alumina 43, 234
– stationary phase 234
American Society for Mass Spectrometry (ASMS) 89
amide-based stationary phase 75
amines 5
amino acids
– sequence 123
amino-based materials 75
amino columns, diol columns 235
amino-modified material 75
amino-modified silica 67, 75
aminopropyl silica 75
ammonium chloride buffer 151
ammonium formate 265
analyte retention 273
– pH-dependent changes 273
– pH effect 266
– time 268
analytes
– behavior 268
– chiral chromatography 5
– dissociation 269
– instantaneous 270
Index to Volume 1

- pH gradient retention time 273
- polarity (hydrophilicity) of 276
- analytical chromatograms, for metoprolol 227
- 2-phenylbutyric acid 20
- 3-phenyl-1-propanol 20
- analytical (linear) chromatography 4
- analytical method
- goal of 288
- analytical target 286
- anionic surfactants 115
- anthelmintics 120
- anti-Langmuir behavior
- adsorption isotherm 4
- antinutrients 123
- APCI/APPI sources 96
- apolar alkyl groups, bonded silica-based
 stationary phases 236
- apolar compounds 114
- aqueous buffer solutions 147
- aqueous mobile phases 21, 173
- aqueous normal-phase chromatography (ANPC) 230
- aqueous-organic mixtures 161, 171, 182
- asymmetry factors 20
- atmospheric pressure chemical ionization (APCI) 88, 113, 260
- interface 89, 94, 95, 103
- process 94
- source 93, 94
- atmospheric pressure electron capture dissociation (APECD) source 98
- atmospheric pressure ionization (API)
- techniques 87, 88, 99, 101
- atmospheric pressure laser ionization (APLI) 88, 98, 99
- atmospheric pressure photoionization (APPI) 88, 114
- source 96
- average particle size 29
- average zone width 13
- avermectins 120
- axial heterogeneity 46

b
- back pressure 37
- band broadening 7, 8, 10–13, 18, 54
 - with increasing flow rate 11
- baseline drift 38
- batch reactors 116
- Bayesian modeling 295
- β-blocker
 - chromatograms for 165
- benzimidazoles 120

benzylamine, at pH values 223
- binodal line 145
- bioinformatics 121, 126
- biological sample 40
- biomolecules, characterization of 111
- biopesticides 119
- bis(triethoxysilyl)ethane 20
- Boltzmann’s constant 17
- bonded ionic groups 232
- bonding type 33
- bootstrapping techniques 295
- bottom-up approach 123
- Box-Behnken design (BBD) 291, 292
- Bronsted model 147
- buffers
 - cations 259
 - hydro-organic mobile phases 147
 - ionization constants 148
- butocarboxim sulfoxide 120
- butyl benzene band profiles 55

c
- caffeine 59
- capacity factors
 - on Click TE-Cys and HILIC columns 77
- capillary columns 76
- capillary electrophoresis (CE) 93
- capillary separated vaporization chamber and nozzle (CSVCN) system 104
- carbapenems 76
- carbohydrates 63, 67
- carbon loading 33
- cardiovascular diseases 125
- carotenoids 127
- carrier gas, flow rate 257
- casein variants 123
- αs1-casein 123
- catecholamines 261
- cationic solutes, on silanols
 - sorption-desorption kinetics of 164
- C18-based silanes 163
- C18 columns 45, 163
 - core-shell column 113
- cell calibration 171
- central composite design (CCD) 291, 292
- central point injection 44
- cephalosporins 76
- ceramics 43
- charge-based HPLC separation 232
- charged aerosol detection (CAD) 258
- charge exchange 97
- charge transfers 258
- chemical bonding (grafting)
– chromatographic ligand 161
chemical interactions 137
chemical stability 21
chemometrics
– analytical target profile/critical quality attributes 286
– critical process parameters 287
– critical quality attributes modeling 293
– data analysis 280, 284
– design space (DS) 294
– investigation of 288
– knowledge space 288
– in LC method development 285
– optimization designs 291
– QbD approach in LC method 286
– quality risk assessment 287
– robustness testing 295
– screening designs 289
– strategy, advantage of 279
– techniques 279
– trial and error approach 285
– working point 295
chiral chromatography 233
chiral HPLC separations 233
chiral preparative chromatography 3
chiral separations 236
chiral stationary phase (CSP) 233
chloroform 145, 146, 241
chromatograms 7, 8, 12, 271, 272
– analysis 281
chromatograph
– analysis 280, 282
– behaviors 192
– chromatographer 25, 219
– columns 6, 27, 159, 266
– conditions 25
– data 280, 281
– detector 120
– molecule, structure of 228
– retention 263
chromatographic hydrophobicity index (CHI) 274
chromatographic hydrophobic retention 151
chromatographic objective function 219
chromatographic packing materials 32, 190
chromatographic performance 17
chromatographic practice 214
chromatographic retention 275
– behavior of probe solutes 185
– mobile phase, pH Measurements of 264
– pH effects 263
chromatographic selectivity 34
chromatographic separations 26, 229
– conditions 218
chromatographic signals 280, 281
– baseline and noise 281
chromatographic system 25, 35, 227, 279, 280
– buffers, characteristics of 265
– high-pressure liquid chromatography (HPLC) 228
– HPLC separation modes
– charge-based separations 232
– other separation mechanisms 232
– polarity-based separations 228
– size-exclusion chromatography (SEC) 232
– normal-phase/polar organic solvents 233
– bonded phases 235
– isocratic/gradient elution 241
– mobile-phase selection 238
– nonbonded phases 234
– retention mechanism 234
– solvent strength/selectivity 239
– stationary phases 234
– stationary phases/selectivity 236
– pH-related effects 274
– physical methods 227
– plant pigments, colorful separation 227
– software packages 281
chromatographic separation 256
ChromDream 220
Click Maltose column 76
– material 76
C₁₈ ligand 183
coccidiostatic drug 120
collision-induced dissociation (CID) mode 88, 99
column bed heterogeneity 46, 49
– axial heterogeneity 46, 49
– radial heterogeneity and wall effect 49, 51
– in slurry packed columns 50
column dead time 27
column dead volume 43
column dimensions 32
column efficiency 12–14, 16, 19, 52
– effect of temperature on 36
column effluent
– ion-exchange column 259
column lengths 9, 16, 57
column loadability 188
column packing 15, 45, 163
– equipment used for downward slurry packed columns 45
– material 276
– processes 45
– techniques 44
column performance 44
column resistance factor 15
<table>
<thead>
<tr>
<th>Term</th>
<th>Page(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>columns</td>
<td>9, 19, 32</td>
</tr>
<tr>
<td>– advancement</td>
<td>39</td>
</tr>
<tr>
<td>– advantages</td>
<td>37</td>
</tr>
<tr>
<td>– with core-shell particles</td>
<td>39</td>
</tr>
<tr>
<td>– diameter</td>
<td>190</td>
</tr>
<tr>
<td>– properties</td>
<td>266</td>
</tr>
<tr>
<td>– selection</td>
<td>35</td>
</tr>
<tr>
<td>– size</td>
<td>32</td>
</tr>
<tr>
<td>– technology</td>
<td>40, 43</td>
</tr>
<tr>
<td>– temperatures</td>
<td>17, 237</td>
</tr>
<tr>
<td>column wall</td>
<td>52</td>
</tr>
<tr>
<td>commercial GC–MS</td>
<td>101</td>
</tr>
<tr>
<td>comprehensive two-dimensional liquid</td>
<td></td>
</tr>
<tr>
<td>chromatography (LC/LC) mode</td>
<td>40</td>
</tr>
<tr>
<td>compression</td>
<td>39</td>
</tr>
<tr>
<td>computer-assisted interpretive optimization strategies</td>
<td>219</td>
</tr>
<tr>
<td>conductivity, detectors</td>
<td>259</td>
</tr>
<tr>
<td>contaminants</td>
<td></td>
</tr>
<tr>
<td>– for data acquisition</td>
<td>111</td>
</tr>
<tr>
<td>conventional column</td>
<td>55</td>
</tr>
<tr>
<td>conventional HPLC</td>
<td>39</td>
</tr>
<tr>
<td>conventional pressure</td>
<td>15</td>
</tr>
<tr>
<td>core-shell particles</td>
<td>15, 39, 43, 113</td>
</tr>
<tr>
<td>corona charged aerosol detectors (CAD)</td>
<td>151</td>
</tr>
<tr>
<td>correlation optimized warping (COW)</td>
<td>282</td>
</tr>
<tr>
<td>coshift</td>
<td>282</td>
</tr>
<tr>
<td>Coulomb interactions</td>
<td>137</td>
</tr>
<tr>
<td>countercurrent chromatography (CCC)</td>
<td>136, 227</td>
</tr>
<tr>
<td>technique</td>
<td></td>
</tr>
<tr>
<td>C<sub>18</sub> porous silica microparticles</td>
<td>192</td>
</tr>
<tr>
<td>critical micellar concentration (CMC)</td>
<td></td>
</tr>
<tr>
<td>– in mobile phase</td>
<td>231</td>
</tr>
<tr>
<td>critical process parameters (CPPs)</td>
<td>287</td>
</tr>
<tr>
<td>critical quality attributes (CQAs)</td>
<td>286, 287</td>
</tr>
<tr>
<td>– multiobjective optimization problems</td>
<td>294</td>
</tr>
<tr>
<td>cross contamination</td>
<td>13</td>
</tr>
<tr>
<td>cross-linked polymer</td>
<td>162</td>
</tr>
<tr>
<td>– structures</td>
<td></td>
</tr>
<tr>
<td>Cucurbita maxima</td>
<td>81</td>
</tr>
<tr>
<td>curtain flow column (CF)</td>
<td>51</td>
</tr>
<tr>
<td>– chromatography columns</td>
<td>52</td>
</tr>
<tr>
<td>– environment</td>
<td>53</td>
</tr>
<tr>
<td>cyano-based silica</td>
<td>75</td>
</tr>
<tr>
<td>cyanopropyl phases</td>
<td>32</td>
</tr>
<tr>
<td>cyclofructans (CFs)</td>
<td></td>
</tr>
<tr>
<td>– cyclofructan 6 (CF6)-based stationary</td>
<td></td>
</tr>
<tr>
<td>phases</td>
<td>76</td>
</tr>
<tr>
<td>cysteine</td>
<td>76</td>
</tr>
<tr>
<td>database</td>
<td></td>
</tr>
<tr>
<td>– for simultaneous analysis using</td>
<td></td>
</tr>
<tr>
<td>UHPLC–orbitrap MS</td>
<td>119</td>
</tr>
<tr>
<td>– workflow scheme used to create and</td>
<td></td>
</tr>
<tr>
<td>apply</td>
<td>119</td>
</tr>
<tr>
<td>data-dependent acquisition (DDA)</td>
<td>115</td>
</tr>
<tr>
<td>– mode</td>
<td>121</td>
</tr>
<tr>
<td>data overloading</td>
<td>283</td>
</tr>
<tr>
<td>data preprocessing</td>
<td></td>
</tr>
<tr>
<td>– chromatographic analysis, problem</td>
<td></td>
</tr>
<tr>
<td>solving</td>
<td>280</td>
</tr>
<tr>
<td>dead time estimation, in chromatographic systems</td>
<td>206</td>
</tr>
<tr>
<td>dead volumes</td>
<td>39</td>
</tr>
<tr>
<td>Derringer desirability function</td>
<td>295</td>
</tr>
<tr>
<td>design of experiments (DoE) methodology</td>
<td>288</td>
</tr>
<tr>
<td>desorption electrospray, ionization (DESI)</td>
<td>106</td>
</tr>
<tr>
<td>detection</td>
<td>38</td>
</tr>
<tr>
<td>– limits</td>
<td>116</td>
</tr>
<tr>
<td>detectors</td>
<td>44, 55, 280</td>
</tr>
<tr>
<td>– linearity</td>
<td>247</td>
</tr>
<tr>
<td>– specifications</td>
<td>39</td>
</tr>
<tr>
<td>– used in LC</td>
<td>261</td>
</tr>
<tr>
<td>deuterium</td>
<td>253</td>
</tr>
<tr>
<td>– lamp</td>
<td>250</td>
</tr>
<tr>
<td>– ultraviolet excitation and long-term</td>
<td></td>
</tr>
<tr>
<td>stability</td>
<td>254</td>
</tr>
<tr>
<td>deuterium oxide</td>
<td>173</td>
</tr>
<tr>
<td>deviations, from linearity</td>
<td>208</td>
</tr>
<tr>
<td>dewetting, bonding density</td>
<td>189</td>
</tr>
<tr>
<td>dichloromethane (DCM)</td>
<td>46, 142</td>
</tr>
<tr>
<td>3,5-dichlorophenol</td>
<td>204</td>
</tr>
<tr>
<td>diffraction</td>
<td></td>
</tr>
<tr>
<td>– optical arrangements</td>
<td>255</td>
</tr>
<tr>
<td>diffusion</td>
<td>18</td>
</tr>
<tr>
<td>– adsorption constant</td>
<td>11</td>
</tr>
<tr>
<td>– coefficients</td>
<td>10, 29</td>
</tr>
<tr>
<td>– – in liquid phase</td>
<td>12</td>
</tr>
<tr>
<td>– length</td>
<td>18</td>
</tr>
<tr>
<td>1,2 dihydroxypropylether</td>
<td>235</td>
</tr>
<tr>
<td>N,N-dimethylformamide</td>
<td>207</td>
</tr>
<tr>
<td>Dimroth–Reichardt parameter</td>
<td>201</td>
</tr>
<tr>
<td>diol-based silica</td>
<td>75</td>
</tr>
<tr>
<td>dioxane</td>
<td>138</td>
</tr>
<tr>
<td>1,4-dioxane index</td>
<td>169, 170</td>
</tr>
<tr>
<td>diphenhydramine</td>
<td>269</td>
</tr>
<tr>
<td>– retention times</td>
<td>270</td>
</tr>
<tr>
<td>dipole-dipole interaction</td>
<td>26, 65, 137</td>
</tr>
<tr>
<td>dipole interactions</td>
<td>32</td>
</tr>
<tr>
<td>dipoles (polarity)</td>
<td>168</td>
</tr>
<tr>
<td>disaccharide (Click Maltose)</td>
<td>76</td>
</tr>
<tr>
<td>discharge lamps, low-pressure</td>
<td>250</td>
</tr>
<tr>
<td>dispersion</td>
<td>36</td>
</tr>
</tbody>
</table>
dispersive solvent 45
dispersive SPE (dSPE) 118
distribution equilibrium 6
divinylbenzene (DB) 113
Doehlert design 291–293
DoE methodology 291, 295, 296
D-optimal design 293
downward slurry packing methods 45, 47
drug development 77
DryLab 220
dual polarity detection 120
dwell time 217
e
eco-toxicity 112
eddy diffusion 9, 10, 12, 36
efficiencies 13–15, 28, 30
– of AFT column depends on segmentation ratio 55
– chromatographic system 8, 9
– gain of AFT column 57
– for 3 μm particle-packed columns 57
– trend 15
electrochemical (EC)
– detection (ECD) 257, 258, 260, 261
– schematic representation of 257
electrode contamination 261
electron affinity (EA) 97
electron capture (EC) 97
electron ionization (EI) 87, 100, 114
– interface 101, 102, 104
– ionization 101
electropneumatic heated nebulizer 98
electrospray 113
electrospray ionization (ESI) 88, 260
– analysis 92
– APPI interface 100
– ion 88, 90
– nebulization process 91
– sources 92
– TOF-MS detection 274
electrospray ionization source (ESI-TOF-MS) methods 274
electrospray quadrupole iontrap mass spectrometry 81
electrostatic forces 26
electrostatic interactions 21, 65, 67
eluents 21
– nonpolar 21
– pH 277
– retention factor for 65
– sequence, polarity order 240
– strength 210, 240
eluotropic strengths 238
embedded polar group (EPG) 167
empirical equations 148
enantiomers 233
dirk-capping 33, 166
– columns 166
– reagent 167
end-point detection processes 44
environmental analysis 112, 113
Escherichia coli 81
ethanol 34, 169
ethanamine 75
ethanol index 170
ethanol, toxic 168
ethylene-bridged hybrid silica 67
evaporative light scattering detector (ELSD) 246, 256
– schematic diagram 256
evolving factor analysis (EFA) 283
exploratory data analysis (EDA)
– cluster analysis 284
external standard calibration 38
extra–column volume 206
extracted ion chromatograms 59
f
factor analysis (FA) 284
fatty acids 126
filter–filter detector 254
flow cell 55
flow rates 10, 11, 15, 17, 19, 35–37, 39, 45, 46, 59, 124
– optimum 37
flow sensitive detectors 54
flow velocities 47, 49, 50, 58
fluid flow 46
flukicides 120
fluorescence (FLD) 254
fluorescence derivatization 252
fluorescence detection 50, 253
– disadvantage of 253
fluorescence detectors 254
– block diagram of 253
– designs 254
– optical arrangement for 253
fluorescence excitation 253
fluorescence spectroscopies 185
fluorescent emission 254
food bioactive peptides 124
food lipidomics 125, 127
food metabolomics 124, 125
foodomics 121
– approach 121
food proteomics 121, 124
food quality 124
food science 121, 124
food toxicants 117
– applications 117
formic acid 80
Fourier transformation (FT)
– infrared 185
Fourier transform ion cyclotron resonance (FT ICR) 111
Fourier transform MS (FTMS) 260
2^3–1 fractional factorial design 290
fractional factorial design (FrFD) 289
fragmentation 99, 100, 102
– collisional-induced dissociation (CID) 99
Fresnel-type RI detector 255
– optical arrangements 255
FrFD, limitation of 290
FTICR-MS data 123
full factorial design (FFD) 289
– one-factor-at-the-time approach 289
– properties of 289
fused core particles 17, 18, 191

g
galactose-modified silica 76
gas chromatography (GC) 11, 35, 95, 227
– EIMS interface 100
– MS, interface 102
gas phase
– ion–molecule reactions 104
– reactions 97
gas–vapor mixture 94
gate valve 46
Gaussian distribution 7
Gaussian/Lorentzian curves 282
Gaussian peak shape 5
Gaussian profiles 280
gel filtration chromatography (GFC) 26, 232
gel permeation chromatography (GPC) 44, 232
ghost peaks 38
glass, electrode 148
glutathione biosynthesis 76, 81
glutenv proteins 123
glycans 78
glycoconjugates 78
glycosylation 79
gradient elution 37, 38, 147, 174, 179, 180, 216, 219, 242
gradient grade solvents 179
gradient of organic modifier 216
gradient program 218
gradient retention times 199
gradient system 37
gradient time 37
grafting density 161
graphitized carbon 113
green chromatography 21
greenest solvent 142
green solvents 142

h
Handerson-Hasselbalch equation 263
heart-cut, approach 40
height equivalent to theoretical plate (HETP)
– curves 48, 49, 57, 59
ehelium, molecules 99
heterogeneity
– of lipids 126
– of packed bed 53
hexafluorobenzene 97
hexane sulfonate 35
high-performance anion-exchange chromatography (HPAEC) 78
high-performance liquid chromatography (HPLC) 2, 15, 63, 159, 228
high pressure liquid chromatography (HPLC) 25, 40, 228
– classification of 228
– columns 43, 44, 93, 222, 247, 256
– conditions 136
– detectors 246, 260
– with mass spectrometry (MS) 260
– method development, strategy 38
– pKa assay
– medium-to-high-throughput 274
– polarity-based separations 239
– separation modes 59, 238
– separations 239
– size particles 17
– ultraviolet (UV) detector 245
– UV cutoff wavelengths of solvents 249
– vs.UHPLC 17
high-pressure packed columns 43
high-resolution mass spectrometry (HRMS) 114
– analyzers 115
– in environmental field 114
high-resolution or tandem (MS/MS) instruments 88
high-temperature liquid chromatography (HTLC) 111, 173
– separations 113
high-throughput, UHPLC–ESI–MS/MS analysis 90
Hildebrand 138
– Δ parameter 141
– solubility 138
– – polarity scales 141
homogeneity, of packing 11
homologous series method 208
Horváth, solvophobic theory of 266
HPLC–EI–MS separation 102
hybrids
– instruments 111
– LIT-orbitrap mass analyzer 125
– materials 5, 19, 20
– silica core 37
– tandem instruments 115
– tandem mass spectrometers 121
hydrocarbons 258
hydrogen bonding 21, 26, 65, 66, 75, 187
hydro-organic
– elution 146
– mobile phase 148, 149
– reversed mobile phases 152
hydrophilic
– interactions 76
– monolithic columns 77
– partitioning 64
hydrophilic interaction liquid chromatography (HILIC) 21, 22, 63, 230, 276
– analysis 276
– application of 77, 78, 80
– cation-exchange (HILIC/CEX) mixed mode
 – zwitterionic material 76
– columns 78, 125
– conventional NPLC stationary phases for 67
– MS approaches in structural glycomics 79
– MS-based metabolomics 80
– MS in structural glycomics 78
– resources 64
– retention mechanism in 22, 276
– role in enrichment/analysis of protein post-
 translational modifications 79
– separation mechanism in 64, 65
– stationary phase 67, 78
hydrophilicity 76
hydrophobic
– chains bond 162
– retention 221
– subtractive approach 221, 222
– subtractive model 221, 222
– surface 161
hydrophobic and ion exchange
 interactions 276
hydrophobic interaction chromatography (HIC) 231
hydrophobic interaction liquid chromatography (HILIC) 144
hydrophobicity 26, 122
– contribution 222
– interactions 5, 32, 36, 231
hyphenation, system 124
hypothetical mobile phase 201
ICH Q2(R1), testing specified by
– icoshift 282
– algorithm 282
– aligns 282
ideal analytical chromatogram 2
ideal chromatographic conditions 280
ideal chromatographic signal 280
ideal Gaussian shape 8
identification, points (IPs) 120
immobilization
– liquid film 182
– polysaccharide chiral stationary phases 236
impurities 77
infinite diameter column 44, 53
influence adsorption processes 209
information-dependent acquisition (IDA)
 experiments 115
injection cycle time 59
injection techniques 44
inline detectors
– characteristics 246
 – detector cell volume 247
 – dynamic range 247
 – linearity 247
 – selectivity 246
 – sensitivity 246
– charged aerosol detection (CAD) 258
– conductivity detectors 259
– coupling detectors 260
– electrochemical detector 257
– evaporative light-scattering detector 256
– fluorescence detector 252
– GC detectors, for HPLC uses 245
– HPLC detectors, comparison of 260
– photodiode array detector 251
– refractive index detector (RID) 245, 255
– UV-visible absorbance detector 247
 – fixed wavelength 249
 – flow cell of 248
 – variable wavelength 250
instantaneous retention factor 269
instrument dwell time 268
intermolecular interactions 229
 – in HILIC, diversity of 66
internal diameter (ID) 101
intersystem crossing (ISC) 99
ion-dipole interactions 137
ion-exchange chromatography 26, 63, 232
ion-exchange interaction 36
ion-exchange particles 43
ion formation 95
 – mechanism of 101
ion fragmentation 91
ionic liquids (ILs) 143
ionic surfactants 231
ionization
 – analytes retention 269
 – compounds 150, 202
 – efficiency 97
 – mechanism 97
 – process 97
 – solutes 170
ion–molecule collisions 101
ion–molecule reactions 104
ion-pair chromatography (IPC) 231
ion pairing
 – agents 231
 – reagents 35, 231
ion, suppression 126
isocratic conditions 26
isocratic elution 37, 38, 242
isocratic measurements 176
isocratic mobile phase 181
isocratic mode 268
isocratic retention, effect of pH 266, 267
isocratic retention time 200
isoeluotropic mobile phases 146
isotope-labeled internal standards (ISs) 92
IT-TOF detector 125

k
KCl solution 148
ketoprofen 266, 273
Kinetex and Accucore columns 43
Kinetex HILIC core–shell column 77
kinetics 6
KISS principle 25
k value 30

I
lactose–modified silica 76
Lambert’s law 247
laser beams 98
linear solvation energy relationship (LESR) approach 66, 220
– model 220, 221
– solute descriptors 221
linear velocity 16, 36, 55
– flow 39
lipid components 126
lipidomics 121, 125, 126
liquid chromatography 1, 2, 11, 15, 21, 35, 39, 87, 227, 245, 259
– advances and trends in 113
– chemometric applications 280
– method 285
– modern trends in 14
– optimization strategies 199
– systems 206
liquid–liquid, chromatography 228
liquid-liquid extraction (LLE) 1, 78, 145, 152
liquid-liquid-like transfer process 184
liquid mobile phase 227, 228
liquid–solid chromatography 228
liquid solvent state 135
literature-based lipophilicity parameters 275
LIT hybrids 121
LIT-orbitrap over QqTOF 116
localized detector 44
log \(k_w \) determination 274
longitudinal diffusion 10
low-resolution (LR) mass spectrometers 114
LR mass spectrometers 115
lysine-based zwitterionic material 76

m
macrolides 120
markers, injection of 207
mass accuracy 124
mass spectrometry (MS) 54, 78, 87, 113, 121, 126, 136, 171
– advances and trends in 113, 117
– analysis 63
– chemical ionization 93
– detection 264
mass spectroscopy (MS) 279
mass transfer 19, 36, 37
– coefficient 29
– kinetics 18, 39
mathematical methods 208
mathematical models 35, 274
MATLAB 220
matrix effect 92
matrix solid-phase dispersion (MSPD) 118
maximal peak compression 273
maximum peak compression 273
maximum residue limits (MRLs) 117
mechanical strength 43
MeOH/buffer mobile phase 150
MeOH mobile phase 150, 151
mercury lamp 250
metabolic fingerprinting 124
metabolite profiling 81
metabolomics 76, 80, 121
– databases 125
– platform based on UHPLC fluorescence TOF-MS assay 125
metal-based packings 234
metal impurities in silica 235
metal-oxide 21, 77, 234
N\(^{-}\)-methyl pyrrolidone 142
methanol (MeOH) 21, 34, 35, 37, 45, 113, 148, 173, 230
methionine 54
method development, strategy 37
methyl-t-butyl ether (MTBE) 141
metoprolol 20
micellar liquid chromatography (MLC) 231
microbial transformation products 116
microelectrodes 50
migration zone 10
milk proteins 123
mobile phase 4–7, 10, 20, 29, 34, 36, 52, 78, 99, 151, 178, 182, 189, 229, 233, 238, 257, 259, 266
– composition 148, 174, 201, 214, 239, 241, 269, 293
– evaporation (nebulization) of 256
– flow rates 37
– linear velocity 16
– modifiers of the short-chain alcohol type 234
– pHs 263, 268–271, 277
– polarity 200
– polar solvents 229
– purification and degassing of 253
– solvents 35
– velocity 11, 18, 29
– viscosity 136
model polarizability 66
modern UHPLC particle 18
modifier content 214
– at solute location 217
– in isocratic elution 219
– retention factor and protonation constant 205
– simultaneous effect 205
molar refraction 66
molecular, dynamics 185
molecular diffusion 9, 10, 12, 21, 36
molecularly imprinted (MI)-SPME techniques 118
monolith, technology 111
monolithic columns 19, 37, 39, 44
monoliths 19
monomeric surfactant molecules 231
monosaccharide (Click Glucose) 76
Monte Carlo simulation 185, 295
MS-based metabolomics 80
MS-based platforms for lipidomic 126
MS-compatible
 – buffers 265
MS detection selectivity 80
MS detectors 59, 114
MS/MS fragmentation 121
MS2 sensitivity 116
MS3 operations 111
MS proteomics 121
multicomponent protocols 117
multidimensional chromatography 39
multidimensional protein identification technology 122
multimode ionization 114
multiple small isocratic steps 218
multiresidue methods 112
multivariate curve resolution (MCR), algorithm 282
mycotoxins 117, 120
m/z values 115

n
nano-ESI systems 93
nano HPLC systems 247
nano-LC
 – columns 101
 – technology 100
nano-LC–MS system 101
nano-online HILIC–MS systems 80
nano-RP–LC–MS 80
naphthalene 21
narrow columns 32
 – AFT columns 58
neutral loss scan (NLS) 118
new material trend 19
NIST library 104
nitrogen (carrier gas) 256
nitromethane 169
 – index 170
NMR spectroscopy 80, 173
noise contributions, for columns 56
non-API interface 100
nonaqueous reversed phase (NARP) 126
nonfluorescent
 – compounds 252
 – molecules 252
nonionic surfactants 115
nonlinear chromatography 3
nonlinear regression 208
nonpolar (hydrophobic) materials 159
nonpolar solvents 241
nonpolar stationary phases 5, 239
non-UV-absorbing components 248
normal-phase liquid chromatography (NPLC) 21, 63, 201, 229
normal-phase (NP) mobile phases 98
normal-phase mode (NP-LC)
 – mobile-phase solvents 238
 – overlapping/coeluting 239
 – pH effect on retention 276
 – separations 238
 – solvents 239
N-values 57

o
octadecylsilane (C$_{18}$ or ODS) 32
1-octanol/water partition coefficient 138, 174
cetyl C$_8$-bonded phases 32
oligosaccharides 76
omic technique 121
on-column matched refractive index
 – detection 50
opioid 124
optimal alignment technique 282
optimum linear velocity 29
optimum sample preparation technique 38
orbitrap analyzers 100
orbitrap detectors 111
orbitrap instruments 123, 126
orbitrap mass analyzer 116
 – drawbacks 117
organic contaminants 112
organic micropollutants 112, 116
organic mobile phase 230
organic modifiers 21, 34
 – gradient 269, 273
organic polymer backbone 276
organic solvents 37
organochlorine pesticides (OCPs) 114
orthogonal retention behavior 44
ortho-phthalaldehyde (OPA) derivatization 253
OSIRIS 220
packing conditions 45
packing factor 11
packing materials 15, 33, 36, 77, 113
– composition 36
– particles 18
papaverine 266
parallel factor analysis (PARAFAC) 283
– model, for multivariate data 283
parallel segmented flow column (PSF) 51
parking lot effect 47
particle diameter 14
particle pore structure 45
particle sizes 12, 16–18, 32, 36, 39, 43, 45, 55, 76, 77
– distribution 29
partition chromatography 26
partitioning interaction 65
partitioning process 183
parvalbumin 123
pattern recognition 284
PDA 3D-chromatogram 252
PDA detector, optical arrangement of 251
peak asymmetry 27, 28, 38
– factor 27
peak fronting 5
peak tailing factor 27
PEEK capillary tube 106
pellicular material 17
peptide-centric approach 123
peptides 124
perfluorinated compounds 113
permeability 19, 44
pesticides 113, 119
phase diagrams 146
pH control 35
phenolic compounds 151
phenylalanine 54
phenyl-bonded phases 32
2-phenylbutyric (PB) acid 20
3-phenyl-1-propranolol (PP) 20
pH gradient conditions 272
pH gradient duration 271
pH gradient mode 273
pH gradient separation 269, 273
phosphocholine 76
phosphorylation 79
photodetector, signal 250
photodiode array detector 251
photodiode detectors 249
photodiodes 251
photodissociation 99
photoionizable compound 97
photoionization 104
– principle of 95
pH-sensitive electrode 171
pH shifts 148
pH stability 43
pH-stable hybrid column (XBridge) 20
pH-stable silica 19
– -based C18 hybrid packing materials 22
pH values 20
physicochemical
– processes 228
piroxicam 59
PIS scan 116
pKₐ determination 274
Plackett–Burman design (PBD) 289, 290
plate height 8
– concept 7
Pneumatic nebulizers 257
polar analytes 63
polar compounds 63
polar-embedded alkyl stationary phases 190
polar end-capped stationary phases 167
polar functional group 167
polar interactions 5, 26
polarity 35, 75
– -based chromatographic system
– of different stationary phases 237
– model 210
– order 240
polar lipids 126
polar metabolites 81
polar mobile phase 5
polar organic compounds 32
polar organic solvents 21
– chromatography 231
– mode 237
polar organic solvents chromatography (POSC) 233
polar pharmaceuticals 78
polar pollutants 114
polar stationary phases 21, 63, 237
polyaromatic hydrocarbons (PAHs) 254
polyaspartamide-based materials 75
poly(aspartic acid) stationary phase 75
polychromatic light 251
polychromatic radiation 251
polycyclic aromatic hydrocarbons 99
polyether ether ketone (PEEK) tube 211
PolyGLYCOPLEX column 78
poly(2-hydroxyethyl aspartamide) stationary phase 75
polymer-based monolithic columns 39
(polymeric) compounds 228
polymeric packing materials 36
polymeric phases 162
polymerization 78
polyphenolics 124, 125
polystyrene 113
poly(succinimide) silica 75
poly(2-sulfoethyl aspartamide) stationary phase 75
pore shape 29
pore sizes 33
– distribution 29
porosity 15, 19, 66
porous graphitized carbon (PGC) 37, 191
porous particles 113
porous polymeric rod 37
porous shell particles 113
porous silica 162
porous silica microparticles 191
post acquisition data processing 117
postcolumn derivations 252
– chamber 253
post-translational modifications 123
3-P,P-diphenylphosphonium-propylsulfonate 76
p–p interaction 32
precision 38, 121
precolumn derivatization 252
precursor ion scan (PrIS) 118
PREOPT-W 220
preparative chromatography 5
pressure 35
– back 58
– fluctuations 45
– from pump 46
pressure drop 15, 17
pressures 17
pressurized liquid extraction (PLE) 118
principal component analysis (PCA) 283
principal components (PCs) 284
product ion scan (PIS) experiments 115
propanol 34, 35
protein composition 121
protein precipitation 78
proteins 123
– analysis of 160
– characterization of 123
proteolytic digestion 123
proteomics 76, 121–123
– applications 123
– workflow 122
protic solvent 148
proton acceptor 169
protonation constant 210
protons, acceptor of 170
proton transfer 97
PSF column 59
pulsations 49
pulsed amperometric detection (PAD) 78
pulsed direct injection 59
pulsed direct injection HPLC-MS 60
pumping clean mobile phase 250
Purnell equation 29, 30
QbD approach
– for LC method development 286
Q-linear ion traps (QqQLT) 111
– instruments, flexibility 115
quadrupole
– analyzer 106, 120
quadrupole time-of-flight (QqTOF) 111
– hybrid instruments 119
– instruments 116, 126
quality by design (QbD) approach 285
quality risk assessment 287
quantitation 39
quasi-isobaric interfering ions 115
QuEChERS
– methodology 117
r
radial
– bed heterogeneity 49
– compression columns 49
– heterogeneity 46
radiation, adsorption 98
radical, molecular ion 101
random walk model 7
rapid scanning variable wavelength 250
Rayleigh stability 90
refractive index (RI) 54, 137, 245
– detectors 255, 256
refractive index detector (RID) 261
regioisomers 127
regular injection profile through a glass packed column 53
Reichardt ET30 parameter 141
Reichardt scale 142
relay gradients 176
reproducibility 63
residual silanols 164
resistance in mass transfer 35
resolution 12–14, 25, 28, 30, 37, 39, 63, 121
 – of carbohydrates 75
 – control 35
 – factor
 – – regulating column 29
 – – control 31
 – of geometrical isomers 37
 – influenced by 30
 – influence on 14
 – vs. selectivity, retention, and efficiency 31
resonantly enhanced multiphoton ionization (REMPI) 98
response surface methodology (RSM) 291
retention 14, 30, 75, 191
 – accuracy of predictions 203
 – of analytes 65
 – behavior 63, 177
 – dependence of 204
 – factor 7, 10, 11, 14, 15, 27, 29, 36, 66, 200
 – of HILIC stationary phases 64
 – NPLC and POSC share 234
retention factors 17, 66, 78, 206, 213, 267, 271
 – k value 33
 – uncertainty in prediction 216
retention, in RPLC 181
retention, in ternary solvent systems 200
retention mechanism 276
 – in HILIC 65
 – mobility of alkyl chains 186
 – solutes compete 188
retention models 6, 66, 215, 218
retention of acidic species 205
retention time 7, 9, 20, 276
 – drift 281
 – in gradient elution 217
 – shift 281
reversed phase (RP), analysis 98
reversed phase high-performance liquid chromatography (RP-HPLC) 263, 269, 274, 276
reversed phase liquid chromatography (RPLC) 63, 159, 199, 230
 – with alkyl-bonded stationary phases 160
 – column 182
 – column, in routine laboratory 192
 – columns 161, 184, 221
 – computer-assisted interpretive optimization 218
 – conventional columns 203
 – dead time estimation 206
 – development and trends 160, 190
 – dimethyl octadecylsilane systems 187
 – dynamic methods 207
 – fundamental equation for gradient elution 216
 – general elution problem of 175
 – gradient elution 216
 – gradients of modifier 175, 176, 179, 181
 – isocratic elution 175, 199
 – linear solvation energy relationships (LSER) 220
 – local models for characterizing columns 221
 – mobile phase 167, 168, 170
 – model regression process on quality of predictions 215
 – modifier content, pH, temperature 210
 – MS-based metabolomics 80, 81
 – nonintegrable retention models 217
 – packing materials 163, 188
 – pH, as experimental factor 202
 – polarity models 201
 – polynomial models 199
 – practical considerations 214
 – pressure effect 211
 – process 166
 – retention factors, deviations of 211
 – retention mechanisms 181–184, 186, 188, 189
 – retention modeling 199
 – retention prediction, enhancing 214
 – retention using modifier content 199
 – reversed mode 159
 – silanol deactivation 166
 – silanol effects 164
 – silica support/chemical bonding 161
 – solvents 170
 – static methods 207
 – stationary-phase characterization 160, 186, 220
 – temperature, as chromatographic factor 172
 – temperature, effect of 209
 – Van’t Hoff equation 209
robustness 39
root-mean-square (RMS) variation 246
RP C18 columns 125
saccharides 75, 76
Saccharomyces cerevisiae 81
safety assessment 123
sample capacity 39
sample carryover 39
sample preparation 38
 – LC–MS analysis 112, 117, 118
sample retention 13
scanning mass spectrometers 120
scanning speed 111
Schiff-base 75
segmentation ratio 52, 54, 55
selected reaction monitoring (SRM) 103, 114
– transitions 114, 115, 118
selectivity 12–15, 19, 27, 29, 31, 39, 44, 45, 59, 75, 113, 114
– factors influencing 33
– of HILIC stationary phases 64
semporous materials 17–19
semporous particles 18, 19
sensitivity 54, 97, 113, 121
– of detector 246
separation methods 39, 280
– characteristics 40
– efficiencies 27, 37
– factor 14, 27
separation science 40
separation selectivity 78
seven ionizable compound, separation of 150
shell particles 39
shifting 282
shotgun methodology 126
Si atom 162
Si-C bond 19
signal intensity 101
silanizing reagent
– hydrophobic surface 166
silanols 164, 235
– blockers 167
– polar adsorption centers 164
silanophilic interactions 164
silica
– batch-to-batch reproducibility 164
– derivatization 166
– hybrid material 21
– stability of 37
silica backbone of the stationary phase 231
silica-based materials
– columns 166
– monolithic column 212, 213
silica-based monoliths 191
– columns 39, 212
silica-based packing 36, 234
silica-based RPLC 190
silica-based stationary phases 5, 234, 239
silica columns
– normal-phase gradient separations 242
silica gel (SiO₂) 67, 234
silica modification, silanization 161
silica packings 166
silica surface functionalization 161
silicon, atom bridge 235
silicone–hydride (Si–H) groups 235
siloxanes 20, 235
– bond hydrolysis 170
silver ion chromatography (SIC) 126
SIM mode 104
single-photon ionization (SPI) 104
single photon low-pressure photoionization-electron ionization interface 105
single-sample analysis 26
size exclusion chromatography (SEC) 26
slurry, reservoir 46, 47
small-angle neutron scattering 185
small-particle stationary phases 17
S/N responses 54
Snyder–Soczewiński relationship 266
– SST diagram 170
Snyder’s triangle 34
– in Cartesian 141
– for choosing solvents 34
– for water and water-miscible solvents 169
sodium phosphate 151
soft desorption ionization methods for mass spectrometric analyses 89
soft ionization technique 91
soft-walled columns 49
software tools for data acquisition 111
solid core particles 37
solid PEEK ring 52
solid-phase extraction (SPE) 78, 117
solubility 21, 26
– of hydrophilic analytes 63
– of mobile phase 200
solute
– dipolarity 66
– hydrophobicity 174
– intermolecular interactions of 168
– migration efficiency 51
– molecules 6
– polarizability 66
– protonation of 203
– retention 174
solute/mobile-phase/stationary-phase parameters 200
solute property (SP) 221
solute–solvent–stationary-phase interactions 66
solutes pair
– measuring selectivity factor 237
solvent 32, 45, 46
– consumption 35
– eluotropic strength 238
– fully miscible 143
– ions 102
total zone broadening 11
toxins 123
trial-and-error approaches 218
triethylamine (TEA) 35, 142
triglycerides (TGs) 126
triple-quadrupole (QqQ)
 – analyzer 120
 – mass analyzers 114
 – mass spectrometers 111
 – MS 59
 – scan modes 114
tryptsin 122
TSK Amide-80 column 75
Tswett’s original straight-phase mode 5
tungsten filament produces 101
turbulent flow chromatography (TFC) 112
two-dimensional chromatography 39
two-dimensional gas chromatography (2D-GC) 39
two-dimensional gel electrophoresis (2DGE) 122
two-dimensional separations 44
two-dimensional systems categories 40
type A silicas 235
type C silicas 235
types of stationary phases 234
types of ternary gradients 177

u
ultrahigh-performance liquid chromatography (UHPLC) 15, 33, 39, 87, 111, 173, 228
 – orbitrap MS 119
 – particles 18
 – QqLIT analysis 114
 – QqQ system 120
 – system 43
ultraperformance liquid chromatography (UPLC) system 19
ultrasonication 45
ultrasonic radiation 47
ultraviolet
 – absorbance detector 260
 – absorbing component 248
 – absorbing impurities 180
 – cutoff value 239
 – detection 54, 168, 260, 261
 – detectors 135, 137
 – filters 113
 – radiation 252
 – sensitivity 233
 – transparent 135
 – vis absorbance 263
 – wavelengths 99
universal residue analytical method 112
uracil 21
v
vacuum UV (VUV)
 – lamp 96
 – radiation 104
validation 38
van Deemter curves 16, 35
van Deemter equation 29, 30, 35, 36, 39, 174
van Deemter plots 29, 30, 39
van der Waals forces 26
van der Waals interactions 137
Van’t Hoff equation 209, 210
vaporization 103
vegetable oils 126
velocity 16, 45
 – linear 58
 – of molecule 6
veterinary drugs 117, 119
vicinal silanols
 – isolated silanols 164
vinyl silica 76
virtual column 53
 – internal diameter of 55
viscosities 15, 17, 35, 63
 – of methanol-water mixtures 168
 – of water 143
viscous friction 17
volatile buffer 63
volatility 151
w
wall effect 49
water buffers 264
water-compatible phases 167
water impurities, of polar solvents 159
water-miscible solvents 160, 167
water-organic mobile phase 266
water-soluble cellular metabolites 81
weak acid (ketoprofen) 266
 – retention factor on mobile-phase pH 267
weak bases
 – isocratic retention, pH effects on 267
weaker interactions 21
weighted regression 215
well-established conventional gradient
 – HPLC 270
Workflow scheme 119
x
xanthophylls 127
Xbridge particles 127
xenon 253
 – lamps 254

z
zero absorbance 250
ZIC®-HILIC column 21
ZIC–HILIC hyphenated offline with RPLC 79
zirconia 43
zirconia-based columns 36

zirconia-based stationary phases 221
zirconia substrate 36
zirconium oxides 113, 161
zone-broadening effects 9, 11
Zorbax XDB columns 165
zwitterionic material 76
zwitterionic stationary phases 76
zwitterions 21