Index

a
advection 19, 20
 advection time scale 33
 effect on chemical distribution 41–43
adveotive–dispersive–reactive (ADR) equation 25–29
ADR models 30
boundary conditions 31, 32
derivation using mass balance 25–27
initial conditions 30, 31
nondimensionalization 32–34
reaction submodel 27
solution method using Laplace transforms 129–135
solution method using Fourier and Laplace transforms 149–155
solutions, 1-D 129–135, 137–140,
solutions, 3-D 149–155, 157–160
sorption submodel 28, 29
superposition 38–40
analytical method 3
AnaModelTool 40, 41, 72, 141–143,
 159, 160
 Model 101 175, 176
 Model 102 31–42, 64–66, 176–178
 Model 103 178, 179
 Model 104 46, 47, 125, 179, 180
 Model 104M 180–182
 Model 105 182, 183
 Model 106 44, 45, 48–50, 52,
 54, 55, 57, 59–64, 184, 185
 Model 107 185, 186
 Model 108 58, 187–189
 Model 109 58, 189–191
 Model 201 191–193
 Model 202 193–195
 Model 203 195–197
 Model 204 197–199
 Model 205 200, 201
 Model 206 201–203
 Model 207 203–205
 Model 208 206, 207
 Model 301 73–76, 207–209
 Model 302 210–212
 Model 303 212–215
 Model 304 215–217
 Model 305 217–220
 Model 306 220, 221
 Model 401 222, 223
 Model 402 223–225
 Model 403 121, 225–229
 Model 404 229–231
 Model 405 232–234
 user instructions 141–143
Aris’ method of moments 88, 97,
 163, 164
Aris’ modified method of moments 103, 165, 167–169
aquifer 2
artesianaquifer 10

© 2017 John Wiley & Sons, Inc. Published 2017 by John Wiley & Sons, Inc.
Companion Website: www.wiley.com/go/Goltz/solute_transport_in_groundwater
Index

b
Borden field experiment 124–126
breakthrough curve behavior 125
parameters used to model 125
spatial and temporal sampling 124, 125
spatial moment behavior 125, 126
boundary conditions
Cauchy/flux boundary condition 32
Dirichlet/concentration boundary condition 31
effect on breakthrough curves 64–66
Neumann boundary condition 32
volume-averaged resident concentration vs. flux-averaged concentration 66, 67

Boussinesq equation 13

c
Cauchy/flux boundary condition 32
characteristic scale
concentration xi, 33
length xi, xii, 33, 58
time 33, 98
chemisorption 22
conceptual model 1
confined aquifer 10
contaminant remediation 121–123
cleanup time sensitivity analysis 121–124
effect of sorption rate on cleanup time 122–124
Laplace domain solutions 121, 171–174
degradation kinetics 27
Damköhler number for degradation xi, 33, 34, 60–62, 83–85, 89–92, 94, 96, 99, 101
effect on spatial moments 104–120
effect on temporal moments 88–102
first-order degradation 24, 25, 60–64, 83–85
solution to ADR with first-order degradation 149–151
solution to ADR with zeroth-order degradation 153–155
timescale 33
zeroth-order degradation 24, 25
Dirac delta function xii, 31, 45, 48, 71, 76, 81, 82, 89, 104, 105
Dirichlet/concentration boundary condition 31
dispersion 20–22, 43–48, 73–78
effect on breakthrough curves vs spatial distributions (1-D) 43–48
effect in three dimensions 73–78
Gaussian (normal) concentration profiles 46–48
molecular diffusion and mechanical dispersion 21
Peclet number xii, 33, 44, 47, 64, 67, 73, 76, 91, 93–95, 102
scale effect 22
timescale 33, 34, 44, 73
dispersivity 21
relation to cleanup time 122
drawdown 14, 15
equilibrium sorption (also see sorption distribution coefficient) 22, 28
breakthrough curve behavior 48–49, 78, 79
linear vs nonlinear 22
related to desorption rate constant 23, 48
spatial distribution behavior 50, 79, 80
spatial moment behavior 104–106
temporal moment behavior 88–97

\textbf{f}
fate and transport processes
advection 19, 20
chemical and biochemical processes 24, 25
dispersion 20–22
sorption 22–24
Fick’s first law of diffusion 21
Fick’s second law of diffusion 21, 23
flow equation 5–7
derivation using mass balance 6, 7
steady-state 7
flux-averaged concentration 66, 67
relation to resident concentration 67
Fourier transforms 103
application to solve
three-dimensional ADR equation 71
first-order degradation kinetics 149–151
zeroth-order degradation kinetics 153–155

\textbf{i}
isotropic/anisotropic medium 4

\textbf{l}
Laplace transforms 145–148
definition 129
inverse transform 40, 130, 131, 134, 135, 151, 154, 165, 167
used in AnaModelTool software 40, 41
used to evaluate temporal moments 88
used to solve one-dimensional ADR equation
first-order degradation kinetics 129–132
zeroth-order degradation kinetics 133–135
used to solve radial ADR equation 171–173
used to solve three-dimensional ADR equation
first-order degradation kinetics 149–151
zeroth-order degradation kinetics 153–155
linear equation 13

\textbf{m}
mass flux 21
model
analog model 1
conceptual model 1
definition 1
importance of assumptions 12, 22, 25, 82
mathematical model 1
model code 3
model solution 3
physical model 1
purpose 1
moments
spatial

\textbf{g}
Gaussian concentration profiles 46–48

\textbf{h}
half-life 25
Heaviside step function \(x_i\), 38, 39
Homogeneous/heterogeneous medium 4
hydraulic conductivity \(x_i\), 4
hydraulic gradient \(x_i\), 3, 4
hydraulic head \(x_i\), 3, 4
moments (contd.)
 absolute 102
 behavior
 first spatial moment behavior 106, 107, 112–115
 second spatial moment behavior 107–110, 115–119
 zeroth spatial moment behavior 106, 110–112
 central 103
definition
 absolute 102
 central 103
 normalized 103
temporal behavior
 first temporal moment behavior 91, 92, 98
 second temporal moment behavior 92–97
 zeroth temporal moment behavior 89–91, 98–102
definition
 absolute 87
 central 88
 normalized 87
evaluation using Aris’ method of moments 88, 97, 163, 164

n
Neumann boundary condition 32
nondimensionalization 32, 34
nonlinear models 13, 24
numerical methods 3

p
Peclet number xii, 33, 44, 47, 64, 67, 73, 76, 91, 93–95, 102
physical model 1

porosity 5

pore velocity xii, 19, 20

r
rate-limited sorption 22–24, 28, 29, 51–60, 80–83, 97–102, 105–119
breakthrough curve behavior 51–53, 81–83, 125
Damköhler number for sorption xi, 54, 56, 81, 99, 100, 112, 115
diffusion-limited 23, 24, 29, 57–60, equivalent first-order rate constants 57–60
mobile–immobile model 23, 24, 29–31, 58–60
relation to cleanup time 125, 126
spatial distribution behavior 53–57, 80–81
spatial moment behavior 106–119, 126
temporal moment behavior 97–102
timescale 22, 54, 56, 99
resident concentration 66, 67
retardation factor xii, 28, 48, 53, 58, 63, 78, 92, 93, 96, 97, 99, 104, 106, 107, 122
ratio of total mass to dissolved mass 50, 51, 56
relation to cleanup time 121–123
Reynold’s number 4

s
semianalytical method 3
sorption
 adsorption 22
 chemisorption 22
 sorption equilibrium (see equilibrium sorption)
sorption kinetics (see rate-limited sorption)
sorption distribution coefficient xii, 22, 23, 44, 51, 52, 58, 125 related to desorption rate constant 23, 48, 51, 52 related to retardation factor xii, 28, 48, 51 specific discharge 4 specific storage 7 superposition 13–15, 38–40

t
tailing breakthrough curve 52, 53, 59, 60, 82, 83, 98, 100, 123–125 spatial distribution 53, 54, 81 Thiem equation 12

u
unconfined aquifer 10

v
virtual experimental system 41, 72, 73

w
water content 5, 6 water table aquifer 10

z
zeroth-order degradation kinetics 37, 38, 71, 133–135, 153, 154