Contents

Contributors xi

1 Chemical ecology of insect parasitoids: towards a new era 1
Stefano Colazza and Eric Wajnberg

Abstract 1
1.1 Introduction 1
1.2 Integrating behavioural ecology and chemical ecology in insect parasitoids 3
1.3 The use of chemical ecology to improve the efficacy of insect parasitoids in biological control programmes 4
1.4 Overview 5
1.5 Conclusions 6
Acknowledgements 6
References 7

Part 1 Basic concepts 9

2 Plant defences and parasitoid chemical ecology 11
Paul J. Ode

Abstract 11
2.1 Introduction 12
2.2 Plant defences against a diversity of attackers 13
 2.2.1 Plant defence signalling pathways 13
 2.2.2 Plant volatiles and parasitoids 16
 2.2.3 Plant toxins and parasitoids 18
 2.2.4 Cross-talk between plant defence pathways 21
2.3 Above-ground–below-ground interactions and parasitoids 24
2.4 Climate change and parasitoid chemical ecology 25
2.5 Conclusions 28
Acknowledgements 28
References 28
3 Foraging strategies of parasitoids in complex chemical environments 37
Nicole Wäschke, Torsten Meiners and Michael Rostás
Abstract 37
3.1 Introduction 37
3.2 Chemical complexity 40
 3.2.1 Plant species diversity and habitat location 40
 3.2.2 Variability in host plant traits and their effects on parasitoid host location 42
3.3 Foraging strategies of parasitoids in chemically complex environments 48
 3.3.1 Behavioural responses to chemical complexity 48
 3.3.2 Learning, sensory filters and neural constraints affecting strategies for dealing with complexity 50
 3.3.3 Influences of life history traits on foraging strategy 51
3.4 Conclusions 53
References 54

4 Chemical ecology of insect parasitoids in a multitrophic above- and below-ground context 64
Roxina Soler, T. Martijn Bezemer and Jeffrey A. Harvey
Abstract 64
4.1 Introduction 65
4.2 Influence of root feeders on above-ground insect herbivores 67
4.3 Influence of soil-borne symbionts on above-ground insect herbivores 69
4.4 Plant-mediated effects of root feeders and soil-borne symbionts on growth and development of parasitoids 70
4.5 Effects of root-feeding insects on HIPVs and host location of parasitoids 74
4.6 Expanding an above–below-ground bitrophic reductionist perspective 76
Acknowledgement 79
References 79

5 A hitch-hiker’s guide to parasitism: the chemical ecology of phoretic insect parasitoids 86
Martinus E. Huigens and Nina E. Fatouros
Abstract 86
5.1 Phoresy 87
5.2 Prevalence of phoretic parasitoids 87
5.3 Important parasitoid and host traits 90
 5.3.1 Parasitoid traits 90
 5.3.2 Host traits 92
5.4 Chemical espionage on host pheromones 93
 5.4.1 Espionage on male aggregation pheromone 93
 5.4.2 Espionage on sex pheromones 98
 5.4.3 Espionage on anti-sex pheromones 99
5.5 Coevolution between phoretic spies and hosts 100
5.6 Biological control 103
6 Novel insights into pheromone-mediated communication in parasitic hymenopterans

Joachim Ruther

Abstract

6.1 Introduction

6.2 Pheromones and sexual behaviour

6.2.1 Volatile sex attractants

6.2.2 Female-derived courtship pheromones

6.2.3 Male-derived courtship pheromones

6.3 Other pheromones

6.3.1 Marking pheromones

6.3.2 Putative alarm and appeasement pheromones

6.3.3 Aggregation pheromones

6.3.4 Anti-aggregation pheromones

6.4 Variability in pheromone-mediated sexual behaviour

6.4.1 Innate plasticity of pheromone behaviour

6.4.2 Learnt plasticity of pheromone behaviour

6.4.3 Plasticity of pheromone behaviour caused by abiotic factors

6.5 Pheromone biosynthesis

6.6 Evolution of parasitoid sex pheromones

6.7 Conclusions and outlook

References

7 Chemical ecology of tachinid parasitoids

Satoshi Nakamura, Ryoko T. Ichiki and Yooichi Kainoh

Abstract

7.1 Introduction

7.2 Long-range orientation

7.2.1 Long-range orientation by direct type parasitoids

7.2.2 Long-range orientation by indirect type parasitoids

7.2.3 Host pheromones used by direct type parasitoids

7.3 Short-range orientation

7.3.1 Short-range orientation by direct type parasitoids

7.3.2 Short-range orientation by indirect type parasitoids

7.4 Conclusions

Acknowledgements

References

8 Climate change and its effects on the chemical ecology of insect parasitoids

Jarmo K. Holopainen, Sari J. Himanen and Guy M. Poppy

Abstract

8.1 On climate change and chemical ecology

8.2 Direct climate change impacts on parasitoids
8.3 Climate change and bottom-up impacts on parasitoids: herbivore host and plant host quality 172
8.4 Impacts of climate change-related abiotic stresses on parasitoid ecology and behaviour 175
 8.4.1 Impacts of elevated temperature 175
 8.4.2 Precipitation and drought 176
 8.4.3 Gaseous reactive air pollutants 177
 8.4.4 Atmospheric CO₂ concentration 179
 8.4.5 Parasitoid response to combined abiotic stresses 180
8.5 Climate change impacts on biological control 181
8.6 Ecosystem services provided by parasitoids: impact of changing climate 182
8.7 Future research directions and conclusions 184
References 185

Part 2 Applied concepts 191

9 Chemical ecology of insect parasitoids: essential elements for developing effective biological control programmes 193
 Torsten Meiners and Ezio Peri
Abstract 193
 9.1 Introduction 194
 9.2 Essential elements in parasitoid chemical ecology 196
 9.3 Manipulation of the population levels of natural enemies by semiochemicals 201
 9.4 Limits and perspectives of behavioural manipulation of parasitoids by applying semiochemicals 204
 9.5 Cautionary example: interspecific competitive interactions in parasitoids 210
 9.6 Conclusions 212
References 213

10 The application of chemical cues in arthropod pest management for arable crops 225
 Maria Carolina Blassioli-Moraes, Miguel Borges and Raul Alberto Laumann
Abstract 225
 10.1 Arable crops: characteristics of the systems and trophic interactions mediated by chemical cues 226
 10.2 Methodologies for using chemical cues to attract and retain parasitoids in arable crops 227
 10.2.1 Direct application of semiochemicals 228
 10.2.2 Environmental manipulation 236
 10.3 Final considerations 237
Acknowledgements 239
References 239
11 Application of chemical cues in arthropod pest management for orchards and vineyards

Stefano Colazza, Ezio Peri and Antonino Cusumano

Abstract

11.1 Introduction

11.2 Pheromone-based tactics in orchards and vineyards
 11.2.1 Host sex pheromones
 11.2.2 Parasitoid pheromones

11.3 Allelochemical-based manipulation in orchards and vineyards
 11.3.1 Herbivore-induced plant volatiles (HIPVs)
 11.3.2 Host-associated volatiles (HAVs)

11.4 Conclusions

Acknowledgement

References

12 Application of chemical cues in arthropod pest management for organic crops

Marja Simpson, Donna M.Y. Read and Geoff M. Gurr

Abstract

12.1 Introduction: organic farming and compatibility of chemical cues

12.2 Overview of plant defences involving plant volatiles

12.3 The use of synthetic HIPVs in pest management

12.4 Arthropod pest management strategies used in organic farming

12.5 Potential for extending chemical cue use in organic systems

12.6 Conclusions

References

13 Application of chemical cues in arthropod pest management for forest trees

Timothy D. Paine

Abstract

13.1 Forest insect herbivores and natural enemy host/prey finding

13.2 Introduction to forest systems

13.3 Examples from North America
 13.3.1 Native bark beetles in plantation and unmanaged forests
 13.3.2 Introduced defoliator in urban and unmanaged forests
 13.3.3 Introduced wood borer in plantation and urban environments

13.4 Conclusions

References

Index