CONTENTS

Preface xxiii

PART 1 EMC THEORY 1

1. Electromagnetic Compatibility 3
 1.1 Introduction 3
 1.2 Noise and Interference 3
 1.3 Designing for Electromagnetic Compatibility 4
 1.4 Engineering Documentation and EMC 6
 1.5 United States’ EMC Regulations 6
 1.5.1 FCC Regulations 6
 1.5.2 FCC Part 15, Subpart B 8
 1.5.3 Emissions 11
 1.5.4 Administrative Procedures 14
 1.5.5 Susceptibility 17
 1.5.6 Medical Equipment 17
 1.5.7 Telecom 18
 1.5.8 Automotive 19
 1.6 Canadian EMC Requirements 19
 1.7 European Union’s EMC Requirements 20
 1.7.1 Emission Requirements 20
 1.7.2 Harmonics and Flicker 22
 1.7.3 Immunity Requirements 23
 1.7.4 Directives and Standards 23
 1.8 International Harmonization 26
 1.9 Military Standards 27
CONTENTS

1.10 Avionics 28
1.11 The Regulatory Process 30
1.12 Typical Noise Path 30
1.13 Methods of Noise Coupling 31
 1.13.1 Conductively Coupled Noise 31
 1.13.2 Common Impedance Coupling 32
 1.13.3 Electric and Magnetic Field Coupling 33
1.14 Miscellaneous Noise Sources 33
 1.14.1 Galvanic Action 33
 1.14.2 Electrolytic Action 35
 1.14.3 Triboelectric Effect 35
 1.14.4 Conductor Motion 36
1.15 Use of Network Theory 36
 Summary 38
 Problems 39
 References 41
 Further Reading 42

2. Cabling 44
 2.1 Capacitive Coupling 45
 2.2 Effect of Shield on Capacitive Coupling 48
 2.3 Inductive Coupling 52
 2.4 Mutual Inductance Calculations 54
 2.5 Effect of Shield on Magnetic Coupling 56
 2.5.1 Magnetic Coupling Between Shield and Inner Conductor 58
 2.5.2 Magnetic Coupling—Open Wire to Shielded Conductor 61
 2.6 Shielding to Prevent Magnetic Radiation 64
 2.7 Shielding a Receptor Against Magnetic Fields 67
 2.8 Common Impedance Shield Coupling 69
 2.9 Experimental Data 70
 2.10 Example of Selective Shielding 74
 2.11 Shield Transfer Impedance 75
 2.12 Coaxial Cable Versus Twisted Pair 75
<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.13</td>
<td>Braided Shields</td>
<td>79</td>
</tr>
<tr>
<td>2.14</td>
<td>Spiral Shields</td>
<td>81</td>
</tr>
<tr>
<td>2.15</td>
<td>Shield Terminations</td>
<td>84</td>
</tr>
<tr>
<td>2.15.1</td>
<td>Pigtails</td>
<td>84</td>
</tr>
<tr>
<td>2.15.2</td>
<td>Grounding of Cable Shields</td>
<td>88</td>
</tr>
<tr>
<td>2.16</td>
<td>Ribbon Cables</td>
<td>94</td>
</tr>
<tr>
<td>2.17</td>
<td>Electrically Long Cables</td>
<td>96</td>
</tr>
<tr>
<td></td>
<td>Summary</td>
<td>96</td>
</tr>
<tr>
<td></td>
<td>Problems</td>
<td>98</td>
</tr>
<tr>
<td></td>
<td>References</td>
<td>103</td>
</tr>
<tr>
<td></td>
<td>Further Reading</td>
<td>104</td>
</tr>
<tr>
<td>3.</td>
<td>Grounding</td>
<td>106</td>
</tr>
<tr>
<td>3.1</td>
<td>AC Power Distribution and Safety Grounds</td>
<td>107</td>
</tr>
<tr>
<td>3.1.1</td>
<td>Service Entrance</td>
<td>108</td>
</tr>
<tr>
<td>3.1.2</td>
<td>Branch Circuits</td>
<td>109</td>
</tr>
<tr>
<td>3.1.3</td>
<td>Noise Control</td>
<td>111</td>
</tr>
<tr>
<td>3.1.4</td>
<td>Earth Grounds</td>
<td>114</td>
</tr>
<tr>
<td>3.1.5</td>
<td>Isolated Grounds</td>
<td>116</td>
</tr>
<tr>
<td>3.1.6</td>
<td>Separately Derived Systems</td>
<td>118</td>
</tr>
<tr>
<td>3.1.7</td>
<td>Grounding Myths</td>
<td>119</td>
</tr>
<tr>
<td>3.2</td>
<td>Signal Grounds</td>
<td>120</td>
</tr>
<tr>
<td>3.2.1</td>
<td>Single-Point Ground Systems</td>
<td>124</td>
</tr>
<tr>
<td>3.2.2</td>
<td>Multipoint Ground Systems</td>
<td>126</td>
</tr>
<tr>
<td>3.2.3</td>
<td>Common Impedance Coupling</td>
<td>128</td>
</tr>
<tr>
<td>3.2.4</td>
<td>Hybrid Grounds</td>
<td>130</td>
</tr>
<tr>
<td>3.2.5</td>
<td>Chassis Grounds</td>
<td>131</td>
</tr>
<tr>
<td>3.3</td>
<td>Equipment/System Grounding</td>
<td>132</td>
</tr>
<tr>
<td>3.3.1</td>
<td>Isolated Systems</td>
<td>133</td>
</tr>
<tr>
<td>3.3.2</td>
<td>Clustered Systems</td>
<td>133</td>
</tr>
<tr>
<td>3.3.3</td>
<td>Distributed Systems</td>
<td>140</td>
</tr>
<tr>
<td>3.4</td>
<td>Ground Loops</td>
<td>142</td>
</tr>
<tr>
<td>3.5</td>
<td>Low-Frequency Analysis of Common-Mode Choke</td>
<td>147</td>
</tr>
<tr>
<td>3.6</td>
<td>High-Frequency Analysis of Common-Mode Choke</td>
<td>152</td>
</tr>
<tr>
<td>3.7</td>
<td>Single Ground Reference for a Circuit</td>
<td>154</td>
</tr>
</tbody>
</table>
4. Balancing and Filtering

4.1 Balancing
 4.1.1 Common-Mode Rejection Ratio
 4.1.2 Cable Balance
 4.1.3 System Balance
 4.1.4 Balanced Loads

4.2 Filtering
 4.2.1 Common-Mode Filters
 4.2.2 Parasitic Effects in Filters

4.3 Power Supply Decoupling
 4.3.1 Low-Frequency Analog Circuit Decoupling
 4.3.2 Amplifier Decoupling

4.4 Driving Capacitive Loads

4.5 System Bandwidth

4.6 Modulation and Coding

5. Passive Components

5.1 Capacitors
 5.1.1 Electrolytic Capacitors
 5.1.2 Film Capacitors
 5.1.3 Mica and Ceramic Capacitors
 5.1.4 Feed-Through Capacitors
 5.1.5 Paralleling Capacitors

5.2 Inductors

5.3 Transformers

5.4 Resistors
 5.4.1 Noise in Resistors
5.5 Conductors
 5.5.1 Inductance of Round Conductors
 5.5.2 Inductance of Rectangular Conductors
 5.5.3 Resistance of Round Conductors
 5.5.4 Resistance of Rectangular Conductors

5.6 Transmission Lines
 5.6.1 Characteristic Impedance
 5.6.2 Propagation Constant
 5.6.3 High-Frequency Loss
 5.6.4 Relationship Among C, L, and ε_r
 5.6.5 Final Thoughts

5.7 Ferrites
Summary
Problems
References
Further Reading

6. Shielding
6.1 Near Fields and Far Fields
6.2 Characteristic and Wave Impedances
6.3 Shielding Effectiveness
6.4 Absorption Loss
6.5 Reflection Loss
 6.5.1 Reflection Loss to Plane Waves
 6.5.2 Reflection Loss in the Near Field
 6.5.3 Electric Field Reflection Loss
 6.5.4 Magnetic Field Reflection Loss
 6.5.5 General Equations for Reflection Loss
 6.5.6 Multiple Reflections in Thin Shields
6.6 Composite Absorption and Reflection Loss
 6.6.1 Plane Waves
 6.6.2 Electric Fields
 6.6.3 Magnetic Fields
6.7 Summary of Shielding Equations
6.8 Shielding with Magnetic Materials
6.9 Experimental Data
6.10 Apertures 267
 6.10.1 Multiple Apertures 270
 6.10.2 Seams 273
 6.10.3 Transfer Impedance 277
6.11 Waveguide Below Cutoff 280
6.12 Conductive Gaskets 282
 6.12.1 Joints of Dissimilar Metals 283
 6.12.2 Mounting of Conductive Gaskets 284
6.13 The “IDEAL” Shield 287
6.14 Conductive Windows 288
 6.14.1 Transparent Conductive Coatings 288
 6.14.2 Wire Mesh Screens 289
 6.14.3 Mounting of Windows 289
6.15 Conductive Coatings 289
 6.15.1 Conductive Paints 291
 6.15.2 Flame/Arc Spray 291
 6.15.3 Vacuum Metalizing 291
 6.15.4 Electroless Plating 292
 6.15.5 Metal Foil Linings 292
 6.15.6 Filled Plastic 293
6.16 Internal Shields 293
6.17 Cavity Resonance 295
6.18 Grounding of Shields 296
 Summary 296
 Problems 297
 References 299
 Further Reading 300
7. Contact Protection 302
 7.1 Glow Discharges 302
 7.2 Metal-Vapor or Arc Discharges 303
 7.3 AC Versus DC Circuits 305
 7.4 Contact Material 306
 7.5 Contact Rating 306
 7.6 Loads with High Inrush Currents 307
<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>7.7</td>
<td>Inductive Loads</td>
<td>308</td>
</tr>
<tr>
<td>7.8</td>
<td>Contact Protection Fundamentals</td>
<td>310</td>
</tr>
<tr>
<td>7.9</td>
<td>Transient Suppression for Inductive Loads</td>
<td>314</td>
</tr>
<tr>
<td>7.10</td>
<td>Contact Protection Networks for Inductive Loads</td>
<td>318</td>
</tr>
<tr>
<td>7.10.1</td>
<td>C Network</td>
<td>318</td>
</tr>
<tr>
<td>7.10.2</td>
<td>R–C Network</td>
<td>318</td>
</tr>
<tr>
<td>7.10.3</td>
<td>R–C–D Network</td>
<td>321</td>
</tr>
<tr>
<td>7.11</td>
<td>Inductive Loads Controlled by a Transistor Switch</td>
<td>322</td>
</tr>
<tr>
<td>7.12</td>
<td>Resistive Load Contact Protection</td>
<td>323</td>
</tr>
<tr>
<td>7.13</td>
<td>Contact Protection Selection Guide</td>
<td>323</td>
</tr>
<tr>
<td>7.14</td>
<td>Examples</td>
<td>324</td>
</tr>
<tr>
<td></td>
<td>Summary</td>
<td>325</td>
</tr>
<tr>
<td></td>
<td>Problems</td>
<td>326</td>
</tr>
<tr>
<td></td>
<td>References</td>
<td>327</td>
</tr>
<tr>
<td></td>
<td>Further Reading</td>
<td>327</td>
</tr>
<tr>
<td>8.</td>
<td>Intrinsic Noise Sources</td>
<td>328</td>
</tr>
<tr>
<td>8.1</td>
<td>Thermal Noise</td>
<td>328</td>
</tr>
<tr>
<td>8.2</td>
<td>Characteristics of Thermal Noise</td>
<td>332</td>
</tr>
<tr>
<td>8.3</td>
<td>Equivalent Noise Bandwidth</td>
<td>334</td>
</tr>
<tr>
<td>8.4</td>
<td>Shot Noise</td>
<td>337</td>
</tr>
<tr>
<td>8.5</td>
<td>Contact Noise</td>
<td>338</td>
</tr>
<tr>
<td>8.6</td>
<td>Popcorn Noise</td>
<td>339</td>
</tr>
<tr>
<td>8.7</td>
<td>Addition of Noise Voltages</td>
<td>340</td>
</tr>
<tr>
<td>8.8</td>
<td>Measuring Random Noise</td>
<td>341</td>
</tr>
<tr>
<td></td>
<td>Summary</td>
<td>342</td>
</tr>
<tr>
<td></td>
<td>Problems</td>
<td>343</td>
</tr>
<tr>
<td></td>
<td>References</td>
<td>345</td>
</tr>
<tr>
<td></td>
<td>Further Reading</td>
<td>345</td>
</tr>
<tr>
<td>9.</td>
<td>Active Device Noise</td>
<td>346</td>
</tr>
<tr>
<td>9.1</td>
<td>Noise Factor</td>
<td>346</td>
</tr>
<tr>
<td>9.2</td>
<td>Measurement of Noise Factor</td>
<td>349</td>
</tr>
</tbody>
</table>
9.2.1 Single-Frequency Method 349
9.2.2 Noise Diode Method 350
9.3 Calculating S/N Ratio and Input Noise Voltage from Noise Factor 351
9.4 Noise Voltage and Current Model 353
9.5 Measurement of V_n and I_n 355
9.6 Calculating Noise Factor and S/N Ratio from V_n-I_n 356
9.7 Optimum Source Resistance 357
9.8 Noise Factor of Cascaded Stages 360
9.9 Noise Temperature 362
9.10 Bipolar Transistor Noise 364
 9.10.1 Transistor Noise Factor 365
 9.10.2 V_n-I_n for Transistors 367
9.11 Field-Effect Transistor Noise 368
 9.11.1 FET Noise Factor 368
 9.11.2 V_n-I_n Representation of FET Noise 370
9.12 Noise in Operational Amplifiers 370
 9.12.1 Methods of Specifying Op-Amp Noise 373
 9.12.2 Op-Amp Noise Factor 375
Summary 375
Problems 376
References 377
Further Reading 378

10. Digital Circuit Grounding 379
10.1 Frequency Versus Time Domain 380
10.2 Analog Versus Digital Circuits 380
10.3 Digital Logic Noise 380
10.4 Internal Noise Sources 381
10.5 Digital Circuit Ground Noise 384
 10.5.1 Minimizing Inductance 385
 10.5.2 Mutual Inductance 386
 10.5.3 Practical Digital Circuit Ground Systems 388
 10.5.4 Loop Area 390

CONTENTS
CONTENTS

11.9 Power Entry Filters 460
 Summary 461
 Problems 461
 References 463
 Further Reading 463

12. Digital Circuit Radiation 464
 12.1 Differential-Mode Radiation 465
 12.1.1 Loop Area 468
 12.1.2 Loop Current 468
 12.1.3 Fourier Series 468
 12.1.4 Radiated Emission Envelope 470
 12.2 Controlling Differential-Mode Radiation 471
 12.2.1 Board Layout 471
 12.2.2 Canceling Loops 474
 12.2.3 Dithered Clocks 475
 12.3 Common-Mode Radiation 477
 12.4 Controlling Common-Mode Radiation 480
 12.4.1 Common-Mode Voltage 481
 12.4.2 Cable Filtering and Shielding 482
 12.4.3 Separate I/O Grounds 485
 12.4.4 Dealing With Common-Mode Radiation Issues 488
 Summary 488
 Problems 489
 References 490
 Further Reading 491

13. Conducted Emissions 492
 13.1 Power Line Impedance 492
 13.1.1 Line Impedance Stabilization Network 494
 13.2 Switched-Mode Power Supplies 495
 13.2.1 Common-Mode Emissions 498
 13.2.2 Differential-Mode Emissions 501
 13.2.3 DC-to-DC Converters 509
 13.2.4 Rectifier Diode Noise 509
13.3 Power-Line Filters
 13.3.1 Common-Mode Filtering
 13.3.2 Differential-Mode Filtering
 13.3.3 Leakage Inductance
 13.3.4 Filter Mounting
 13.3.5 Power Supplies with Integral Power-Line Filters
 13.3.6 High-Frequency Noise
13.4 Primary-to-Secondary Common-Mode Coupling
13.5 Frequency Dithering
13.6 Power Supply Instability
13.7 Magnetic Field Emissions
13.8 Variable Speed Motor Drives
13.9 Harmonic Suppression
 13.9.1 Inductive Input Filters
 13.9.2 Active Power Factor Correction
 13.9.3 AC Line Reactors
Summary
Problems
References
Further Reading

14. RF and Transient Immunity
14.1 Performance Criteria
14.2 RF Immunity
 14.2.1 The RF Environment
 14.2.2 Audio Rectification
 14.2.3 RFI Mitigation Techniques
14.3 Transient Immunity
 14.3.1 Electrostatic Discharge
 14.3.2 Electrical Fast Transient
 14.3.3 Lightning Surge
 14.3.4 Transient Suppression Networks
 14.3.5 Signal Line Suppression
 14.3.6 Protection of High-Speed Signal Lines
 14.3.7 Power Line Transient Suppression
 14.3.8 Hybrid Protection Network
16. PCB Layout and Stackup

16.1 General PCB Layout Considerations
16.1.1 Partitioning
16.1.2 Keep Out Zones
16.1.3 Critical Signals
16.1.4 System Clocks

16.2 PCB-to-Chassis Ground Connection

16.3 Return Path Discontinuities
16.3.1 Slots in Ground/Power Planes
16.3.2 Split Ground/Power Planes
16.3.3 Changing Reference Planes
16.3.4 Referencing the Top and Bottom of the Same Plane
16.3.5 Connectors
16.3.6 Ground Fill

16.4 PCB Layer Stackup
16.4.1 One- and Two-Layer Boards
16.4.2 Multilayer Boards
16.4.3 General PCB Design Procedure

Summary

Problems

References

Further Reading

17. Mixed-Signal PCB Layout

17.1 Split Ground Planes

17.2 Microstrip Ground Plane Current Distribution

17.3 Analog and Digital Ground Pins

17.4 When Should Split Ground Planes Be Used?

17.5 Mixed Signal ICs
17.5.1 Multi-Board Systems

17.6 High-Resolution A/D and D/A Converters
17.6.1 Stripline
17.6.2 Asymmetric Stripline 674
17.6.3 Isolated Analog and Digital Ground Planes 675

17.7 A/D and D/A Converter Support Circuitry 676
17.7.1 Sampling Clocks 676
17.7.2 Mixed-Signal Support Circuitry 678

17.8 Vertical Isolation 679

17.9 Mixed-Signal Power Distribution 681
17.9.1 Power Distribution 681
17.9.2 Decoupling 682

17.10 The IPC Problem 684
Summary 685
Problems 686
References 687
Further Reading 687

18. Precompliance EMC Measurements 688

18.1 Test Environment 689
18.2 Antennas Versus Probes 689
18.3 Common-Mode Currents on Cables 690
18.3.1 Test Procedure 693
18.3.2 Cautions 693

18.4 Near Field Measurements 694
18.4.1 Test Procedure 695
18.4.2 Cautions 696
18.4.3 Seams and Apertures in Enclosures 697

18.5 Noise Voltage Measurements 697
18.5.1 Balanced Differential Probe 698
18.5.2 DC to 1-GHz Probe 700
18.5.3 Cautions 700

18.6 Conducted Emission Testing 700
18.6.1 Test Procedure 702
18.6.2 Cautions 703
18.6.3 Separating C-M from D-M Noise 704

18.7 Spectrum Analyzers 707
CONTENTS

D. Dipoles for Dummies

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>D.1 Basic Dipoles for Dummies</td>
<td>746</td>
</tr>
<tr>
<td>D.2 Intermediate Dipoles for Dummies</td>
<td>751</td>
</tr>
<tr>
<td>D.3 Advanced Dipoles for Dummies</td>
<td>756</td>
</tr>
<tr>
<td>D.3.1 Impedance of a Dipole</td>
<td>756</td>
</tr>
<tr>
<td>D.3.2 Dipole Resonance</td>
<td>756</td>
</tr>
<tr>
<td>D.3.3 Receiving Dipole</td>
<td>759</td>
</tr>
<tr>
<td>D.3.4 Theory of Images</td>
<td>759</td>
</tr>
<tr>
<td>D.3.5 Dipole Arrays</td>
<td>761</td>
</tr>
<tr>
<td>D.3.6 Very High-Frequency Dipoles</td>
<td>763</td>
</tr>
<tr>
<td>Summary</td>
<td>763</td>
</tr>
<tr>
<td>Further Reading</td>
<td>764</td>
</tr>
</tbody>
</table>

E. Partial Inductance

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>E.1 Inductance</td>
<td>765</td>
</tr>
<tr>
<td>E.2 Loop Inductance</td>
<td>767</td>
</tr>
<tr>
<td>E.2.1 Inductance of a Rectangular Loop</td>
<td>768</td>
</tr>
<tr>
<td>E.3 Partial Inductance</td>
<td>770</td>
</tr>
<tr>
<td>E.3.1 Partial Self-Inductance</td>
<td>771</td>
</tr>
<tr>
<td>E.3.2 Partial Mutual Inductance</td>
<td>773</td>
</tr>
<tr>
<td>E.3.3 Net Partial-Inductance</td>
<td>776</td>
</tr>
<tr>
<td>E.3.4 Partial Inductance Applications</td>
<td>776</td>
</tr>
<tr>
<td>E.3.5 Transmission Line Example</td>
<td>778</td>
</tr>
<tr>
<td>E.4 Ground Plane Inductance Measurement Test Setup</td>
<td>780</td>
</tr>
<tr>
<td>E.5 Inductance Notation</td>
<td>785</td>
</tr>
<tr>
<td>Summary</td>
<td>788</td>
</tr>
<tr>
<td>References</td>
<td>788</td>
</tr>
<tr>
<td>Further Reading</td>
<td>789</td>
</tr>
</tbody>
</table>

F. Answers to Problems

Index

825